WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |

Наследие: Методологическое обеспечение технологии вибровспучивания ячеистых бетонов.

В истории науки можно насчитать множество случаев, когда великие изобретения и достижения находили достойную оценку только после многолетнего периода забвения. Не исключением в этом плане стало и бетоноведение.

Мы вновь «открываем» давно открытое, и исследуем уже исследованное. Хотя золотое правило любого исследователя – прежде чем что либо изобретать, изучи труды предшественников.

Метод вибровспучивания в технологии ячеистых бетонов, как раз тот случай, когда замечательная технология как раз и не была забыта. По этому методу работали и работают множество заводов производящих газосиликаты в промышленных объемах.

Но оказывается(как раз это то и забыли), что данный метод вполне реализуем и в технологии ячеистых бетонов неавтоклавного твердения. Мало того он способен кардинально изменить технологический регламент производства пенобетона и газобетона.

В строительной специализированной периодике можно встретить множество упоминаний о методе вибровспучивания. Причем авторы, в большинстве своем, всегда аппелируют к неким трем первоисточникам – начальным исследованиям, заложившим основу этого метода.

Эти три бесценные брошюры, которые «живьем» никто не видел, но на которые все ссылаются мы и приводим в цикле «Наследие».

Государственный комитет Совета Министров РСФСР по делам строительства (ГОССТРОЙ РСФСР) Центральный комитет профсоюза рабочих строительства и промстройматериалов.

Республиканский НаучноИсследовательский Институт местных строительных материалов ВСНХ (РОСНИИМС) Всесоюзный НаучноИсследовательский Институт новых строительных материалов АСиС СССР (ВНИИНСМ) ПРОИЗВОДСТВО ИЗДЕЛИИ ИЗ ЯЧЕИСТОГО СИЛИКАТНОГО БЕТОНА МЕТОДОМ ВИБРОВСПУЧИВАНИЯ (доклад к семинару по обмену передовым опытом в производстве и применении изделии из силикатобетона) Москва I к.т.н. Левин С.Н. (НИИжелезобетон) к.т.н. Меркин А.П. (МИСИ им. Куйбышева) За последнее время многими научноисследовательскими организациями проведены значительные экспериментальные работы в области технологии ячеистых силикатных бетонов.

Общим для всех исследований является следующая технологическая схема изготовления образцов:

а) помол кремнеземистого компонента и извести на шаровых или вибрационных мельницах б) приготовление ячеистой массы из извести, кремнеземистого компонента, газообразователя, воды и добавок, стимулирующих скорость газовыделения и схватывания массы в) приготовление растворной смеси в вертикальных газобетономешалках г) формование изделий, выдержка их перед автоклавной обработкой, вызревание и срезка горбушки, разрезка изделий д) автоклавная обработка е) распалубка изделий Однако принятая технология газосиликата при всей своей простоте страдает одним существенным недостатком: свежеизготовленная ячеистая масса имеет невысокую структурномеханическую прочность в процессе "вызревания", что препятствует созданию поточной линии производственного процесса.

Проведенная нами работа имела своей целью интенсифицировать процесс производства газосиликата, повысить прочность и стойкость и создать условия для организации поточной линии производства.

Как известно, решающее влияние на получение газосиликатных изделий заданных объемного веса и физикомеханических свойств оказывают пластичновязкие свойства известковопесчаных растворов для получения ячеистой массы. Такие растворные смеси представляют собой технические высококонцентрированные водные суспензии и относятся к пластичным дисперсным системам. При напряжении ниже предела текучести они испытывают только упругие деформации, за пределом текучести обнаруживают остаточные (пластические) деформации.

Реологические свойства такой дисперсной системы характеризуются двумя физическими константами: предельным напряжением сдвига и коэффициентом пластической вязкости.

Если величина предельного напряжения сдвига больше, чем подъемная сила пузырьков газа, то раствор не вспучивается, если же коэффициент пластической вязкости слишком мал происходит прорыв газов и масса оседает.

Таким образом, необходимо строгое соответствие газовыделения в растворной смеси с ее структурно механическими свойствами.



Решающим фактором определяющим пластичновязкие свойства растворных смесей, является водо/вяжущее отношение (отношение воды к весу всех сухих материалов). Для уменьшения предельного напряжения сдвига и обеспечения полного процесса вспучивания в смесь для ячеистого бетона вводятся значительные количества воды. Так, для газосиликата водо/вяжущее отношение составляет 0.50 – 0.60. Огромный избыток воды, уменьшая предельное напряжение сдвига, вместе с тем понижает пластическую вязкость системы, от чего падает газоудерживающая способность массы и происходит прорыв газа, что на производстве принято называть "кипением". Кроме того, избыток воды резко понижает структурную прочность ячеистой массы, в связи с чем необходима длительная выдержка изделий до автоклавной обработки. Время "вызревания" изделий до придания ячеистой массе прочности, достаточной для ее разрезки и транспортировки, должно составить 6 12 часов. В это время, во избежание оседания массы и нарушения структуры, формы должны оберегаться от сотрясения и передвижения.

Таким образом, на первый взгляд создается неразрешимая альтернатива: нельзя уменьшать "водо/вяжущее" отношение, ибо это лишит растворную смесь возможности вспучиваться, с другой стороны высокое содержание воды затворения не позволяет создать в производстве ячеистых бетонов какую бы то ни было линию формования изделий.

В производстве обычных бетонных изделий для ограничения до минимума содержания воды давно уже пришли к искусственному приему улучшения подвижности смеси. Таким приемом является вибрирование бетонной смеси. При вибрировании резко уменьшается внутреннее трение в массе, отчего происходит мгновенная релаксация напряжений.

Вибрация, таким образом, имеет своим результатом превращение бетонной смеси в состояние, близкое к жидкому, в состояние разжижения. Такое превращение бетонной смеси или раствора объясняется следующим. В обычном состоянии бетоны и растворы обладают структурой, которая обусловливается особыми свойствами воды затворения и силами молекулярного сцепления. Если привести бетонную смесь в состояние вибрации, то зерна смеси приходят в движение. При этом происходит разрушение структуры дисперсной системы, а вместе с тем и иммобилизация значительной части воды из сольватных оболочек. Это равносильно введению в смесь новых добавок воды. В бетонной, смеси относительное движение зерен компонентов при вибрации приводит к тому, что равнодействующая их движения стремится расширить занимаемый смесью объем во всех направлениях, создавая "активное" давление.

Это "активное" давление оказывает сопротивление внешнему давлению, собственному весу и силам сцепления частиц, заставляя зерна последовательно удаляться друг от друга на короткие промежутки времени. В обычной бетонной смеси между разошедшимися в разные стороны зернами вклиниваются вышележащие частицы, от чего в общем плотность массы повышается.

Другое положение имеет место при вибрировании растворной смеси для ячеистого бетона. Масса в момент вибрации испытывает внутреннее давление, вызываемое процессом газовыделения в смеси. Поэтому пустоты, образующиеся в вибрируемой смеси заполняются пузырьками газа, стремящегося увеличить свой объем. Таким образом, если обычные бетонные смеси в результате вибрации, последовательно двигаясь вниз уплотнятся, то при вибрировании раствора с газообразователем происходит вспучивание масса движется вверх.

Процесс совмещения вспучивания ячеистого бетона с вибрацией назван нами вибровспучиванием.

Метод вибровспучивания имеет ряд качественных отличий от обычного процесса вспучивания:

1. Ускоряются реакции гидратации вяжущего. Ускорение реакции вызывается следующими причинами: при гашении извести вокруг ее частиц образуется диффузный слой, который препятствует обмену, а тем самым и дальнейшей гидратации. При вибрировании зерна раствора приходят в движение, отчего происходит разрушение диффузионного слоя, обнажаются непогасившиеся поверхности, поступают новые порции воды, слабо насыщенные гидратом окиси кальция. Ускорение гидратации и уменьшение водовяжущего отношения приводят к тому, что значительно быстрее растет температура в смеси. В свою очередь, как показали работы Ниббса, скорость реакции гидратации извести увеличивается вдвое при повышении температуры среды на каждые 10°С.





2. Несравнимо быстрее заканчивается процесс газовыделения. Более высокая температура смеси и непрерывный обмен продуктов взаимодействия чистой щелочью обусловливает окончание процесса газовыделения в течение 60 90 секунд.

3. Уменьшается трение вспучивающейся массы о стенки формы. В спокойной форме движение массы вверх тормозится боковыми стенками формы, и если отношение площади бортоснастки к свободной поверхности бетона велико, то наблюдается заметная кривизна поверхности массы или, как обычно говорят, образуется "горбушка".

Вибрация сопровождается наибольшим разжижением массы у стенок формы, поэтому сводится на нет "телескопический эффект" вспучивания, бетон в форме не имеет "горбушки", и при правильно подобранной высоте заливки раствора в форму можно довести до минимума образование излишков ячеистой массы.

4. Очень быстро нарастает структурная прочность массы. Большая скорость гидратации извести, уменьшенное водо/вяжущее отношение, высокая температура смеси, быстрое прекращение газовыделения, уплотнение стенок газовых пор за счет вибрации все это приводит к значительно более быстрому нарастанию структурной прочности ячеистой массы. В связи с этим появляется возможность во много раз сократить время "вызревания" изделий.

5. Происходит непрерывное перемещение газовых пузырьков, однако, относительно высокая пластическая вязкость растворной смеси препятствует их объединению. Поэтому вибровспученные газосиликаты отличаются мелкой однородной структурой пор.

Разработка технологических параметров производства газосиликата методом вибровспучивания производилась в лабораториях НИИЖелезобетона Главмоспромстройматериалы и МИСИ им. Куйбышева, а также на Люберецком заводе силикатного кирпича.

В качестве исходных материалов применялась тонкомолотая известькипелка с удельной поверхностью от 5000 до 8000 см2/г активностью 55 90%, песок Люберецкого карьера молотый до 20004000 см2/г, пудра алюминиевая ПАК3, гипс двуводный.

Для лабораторных работ использовалась трехчастотная виброплощадка, одночастотная площадка КузнецоваДесова, а для формования крупных изделий 5тонная вибрационная площадка и поверхностные вибраторы (как навесные) типа С414.

В процессе исследования устанавливалось оптимальное водо/вяжущее отношение для различных значений объемного веса, температура воды затворения, длительность перемешивания, длительность и амплитуда вибрации, длительность выдержки образцов до автоклавной обработки. Необходимо отметить, что расход алюминиевой пудры принимался такой же, как и для обычного газосиликата соответствующего объемного веса, а именно, 0.15% от веса сухих материалов для теплоизоляционного газосиликата с объемным весом 400 480 кг/м3 и 0.07% для конструктивного газосиликата с объемным весом 650 750 кг/м3.

В предварительных опытах било установлено, что повышение активности массы до 20 – 22% заметно увеличивает прочность изделий. Дальнейшее увеличение активности требует высокой степени измельчения кремнеземистого компонента, и хотя при этом наблюдается некоторое повышение прочности, экономически это не является целесообразным. Поэтому работа проводилась на массе с активностью 20%.

Перемешивание молотых компонентов производилось в следующей последовательности: вначале готовился песчаник шлам, затем засыпалась известь или совместно измельченная извсстковопесчаная смесь состава 1:1 и материалы перемешивались 2 мин., после введения алюминиевой суспензии смесь перемешивалась еще 1.5 минуты и заливалась в формы.

Для обеспечения минимальной длительности вспучивания необходимо, чтобы процесс вибрирования раствора совпадал с началом заметного газовыделения. Это достигается соответствующим подбором температуры растворной смеси в момент заливки.

Длительность вибрации, соответствующая длительности вспучивания, является одним из основных параметров производства. При обычном процессе производства гаэосиликата длительность вспучивания массы в каждом отдельном случае различно и колеблется в больших пределах.

Pages:     || 2 | 3 | 4 | 5 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.