WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 18 |

. (2.24) Это условие выполняется для всех практически встречающихся механизмов, если двигатель работает на участке OM механической характеристики. Следовательно, двигатель может работать устойчиво только в диапазоне скольжений ротора. Для расширения диапазона устойчивой работы точку M механической характеристики асинхронной машины надо сдвигать вправо. Это можно осуществить в случае применения двигателя с фазовым ротором включением в цепь ротора дополнительного активного сопротивления.

Приведенное выше условие является необходимым, но недостаточным. Когда двигатель работает при скольжении, меньшем, но близком к нему, случайная перегрузка двигателя может привести к его остановке, если на краткое (или длительное) время. Поэтому максимальный момент иногда называют опрокидывающим моментом. Для того чтобы двигатель работал надежно, его номинальный режим выбирают таким, чтобы (2.25) Так как величина момента пропорциональна квадрату питающего напряжения, то даже сравнительно небольшое изменение питающего напряжения может привести к существенному снижению.

Характеристиками асинхронного двигателя называются зависимости скорости вращения (или скольжения ), момента на валу, тока статора, коэффициента полезного действия и коэффициента мощности, от полезной мощности при и. Характеристики определяются либо экспериментальным, либо расчетным (по схеме замещения) путями. Они строятся только для зоны устойчивой работы двигателя, т. е. от скольжения, равного нулю, до скольжения, превышающего номинальное на 1020%. Перечисленные выше характеристики имеют вид (рис.2.18):

Рис. 2.18. Рабочие характеристики асинхронного двигателя.

Скорость вращения ротора в режиме полной нагрузки лишь на 28% меньше скорости холостого хода, т.к. при проектировании асинхронной машины с целью уменьшения потерь в обмотке ротора стремятся снизить скольжение двигателя в номинальном режиме его работы до величины 0,02ё0,06. Следовательно, скоростная характеристика асинхронного двигателя является довольно “жесткой”.

Вращающий момент на валу машины определяется выражением, где угловая скорость вращения ротора. Так как изменяется незначительно (вследствие жесткости скоростной характеристики), то зависимость момента от мощности имеет практически линейный характер.

Момент несколько меньше электромагнитного момента :, где момент, обусловленный трением в двигателе.

Зависимость тока статора асинхронного двигателя от полезной мощности имеет примерно такой же характер, как в трансформаторе ток статора зависит от тока нагрузки. Но величина тока холостого хода двигателя значительно больше, чем у трансформатора (20ё40% у асинхронного двигателя и 510% у трансформатора).

Зависимость коэффициента полезного действия асинхронного двигателя такая же, как и у трансформатора.

Коэффициент мощности асинхронного двигателя при переходе от режима холостого хода к режиму номинальной нагрузки возрастает от значения ё0,18 до некоторой максимальной величины, которая для двигателей малой мощности составляет 0,6ё0,85, а для двигателей средней и большой мощности 0,85ё0,92. При дальнейшем росте нагрузки несколько уменьшается.

2.3.1. Пуск в ход асинхронных двигателей Практически используются следующие способы пуска: непосредственное подключение обмотки статора к сети (прямой пуск); понижение напряжения, подводимого к двигателю при пуске; подключение к обмотке ротора пускового реостата.

Прямой пуск применяется для двигателей малой и средней мощности. Обычно при прямом пуске действующее значение пускового тока превосходит номинальное значение в четыре – шесть раз, а пусковой момент примерно равен: ё1,2).

Прямой пуск самый распространенный способ пуска в ход асинхронных двигателей. Недостатками его являются: большой пусковой ток и сравнительно малый пусковой момент, достоинство – простота.

Пуск асинхронного двигателя при пониженном напряжении применяют для двигателей большой мощности. Понижение напряжения может осуществляться тремя способами:

а) путем переключения обмотки статора при пуске с нормальной схемы “треугольник” на пусковую схему “звезда”. В этом случае фазовое напряжение уменьшается в раз, что обуславливает уменьшение фазовых токов в раз и линейных токов в 3 раза. По окончании процесса пуска обмотку статора переключают на нормальную схему “треугольник”.



б) путем включения в цепь статора на период пуска добавочных активных или реактивных сопротивлений.

в) путем подключения двигателя к сети через понижающий автотрансформатор. Секции трансформатора в процессе пуска переключаются соответствующей аппаратурой.

Недостатком всех этих способов является значительное уменьшение пускового момента, который пропорционален квадрату приложенного напряжения. Поэтому пуск асинхронного двигателя при пониженном напряжении может применяться только при пуске двигателей без нагрузки.

Пуск с помощью пускового реостата применяется для двигателей с фазовым ротором. Этим способом можно осуществить пуск двигателя при и резко уменьшить пусковой ток. Двигатели с фазовым ротором применяют только при тяжелых условиях пуска (когда необходимо развивать максимально возможный пусковой момент), при малой мощности электрической сети или при необходимости плавного регулирования скорости вращения.

2.3.2. Регулирование скорости вращения асинхронных двигателей Скорость вращения асинхронного двигателя определяется зависимостью.

Следовательно, ее можно регулировать, изменяя питающего напряжения, число пар полюсов и величину скольжения. Последнее можно осуществить изменяя и.

Регулирование путем изменения частоты питающего напряжения. Применяемые ранее электромашинные преобразователи частоты очень громоздки, сложны в эксплуатации и дороги. Поэтому они практически полностью вытеснены полупроводниковыми преобразователями частоты, которые в настоящее время обеспечивают достаточную надежность в работе. При применении этого способа регулирования необходимо обеспечить (при изменении частоты питающей сети и питающего напряжения) постоянство потока намагничивания асинхронной машины.

Регулирование путем изменения числа пар полюсов позволяет получить ступенчатое изменение скорости вращения. Для двукратного изменения скорости отдельные катушки, составляющие данную фазу, переключаются с последовательного согласного соединения на встречное или с последовательного на параллельное. Обмотку ротора в этом случае выполняют короткозамкнутой. Если нужно иметь три или четыре скорости, то на статоре располагают еще одну обмотку, при переключении которой можно получить еще две скорости. Асинхронные электродвигатели с переключением числа пар полюсов называются многоскоростными. Недостатки этого способа регулирования скорости вращения: большие габариты и вес по сравнению с двигателями нормального исполнения, а, следовательно, и большая стоимость; большая величина ступеней регулирования (при частоте 50 Гц скорость вращения поля n, при переключениях изменяется в отношении 3000:1500:1000:750).

Регулирование путем включения в цепь ротора добавочных сопротивлений. Этот способ применяется для двигателей с фазовым ротором, он позволяет плавно изменять скорость вращения двигателя.

Недостатки: плохие энергетические характеристики асинхронной машины и чрезмерно “мягкая” механическая характеристика машины, что в некоторых случаях (при пульсациях нагрузочного момента) недопустимо.

Регулирование путем изменения питающего напряжения. Для двигателей нормального исполнения этот метод неприменим, т.к. пропорционально квадрату уменьшения напряжения питающей сети уменьшается величина момента двигателя. Он применяется для двигателей малой мощности, которые имеют значительные активные сопротивления роторной обмотки, т.к. в этом случае скольжение резко возрастает и максимум момента сдвигается в зону близкую и даже в область. Снижение КПД двигателя, связанное с увеличением потерь мощности для этих типов двигателей не имеет существенного значения.

2.4. Асинхронные исполнительные двигатели Эти двигатели используются в устройствах автоматики, служат для преобразования подводимого к ним электрического сигнала в механическое перемещение вала. Исполнительные двигатели являются управляемыми двигателями. При заданном моменте нагрузки скорость двигателя должна строго соответствовать подводимому напряжению и меняться при изменении его величины и фазы. В качестве исполнительных двигателей применяются, главным образом, двухфазные асинхронные двигатели с короткозамкнутым ротором (рис. 2.19а).

Рис. 2.19. Принципиальная схема асинхронного исполнительного двигателя (а) и векторные диаграммы его напряжений при амплитудном (б) и фазовом (в) методах управления.





Одна из обмоток статора B, называемая обмоткой возбуждения, подключается к сети переменного тока с постоянным действующим значением напряжения. Ко второй обмотке статора У, называемой обмоткой управления, подключается напряжение управления, от управляющего устройства УУ.

Различают три основных способа изменения напряжения на обмотке управления: амплитудное, фазовое и амплитуднофазовое.

При амплитудном управлении изменяется лишь величина амплитуды напряжения управления или пропорциональное ей действующее значение этого напряжения (рис.2.19б). Величина напряжения управления может быть оценена коэффициентом сигнала.

Векторы напряжений управления и возбуждения при всех значениях коэффициента образуют угол.Фазовое управление характерно тем, что напряжение управления остается неизменным по величине, а регулирование скорости достигается изменением угла сдвига фаз между векторами управления и возбуждения (рис. 2.19в). В качестве коэффициента сигнала при фазовом управлении принимается величина, равная синусу угла сдвига фаз между векторами напряжений управления и возбуждения, т. е..

При амплитуднофазовом управлении изменяется как амплитуда напряжения управления, так и угол сдвига фаз между напряжениями и, подаваемыми на обмотки статора. Этот способ осуществляется практически путем включения в цепь обмотки возбуждения конденсатора, поэтому схема амплитуднофазового управления часто называется конденсаторной.

При всех методах управления скорость асинхронного двигателя изменяется за счет создания несимметричного эллиптического магнитного поля.

2.4.1. Создание вращающегося магнитного поля Индукция в воздушном зазоре электрической машины переменного тока определяется распределением НС вдоль окружности статора. Если пренебречь магнитным сопротивлением ферромагнитных участков магнитной цепи машины, то под кривой распределения НС можно понимать кривую распределения магнитного напряжения в зазоре машины. При равномерном воздушном зазоре такой же вид будет иметь и кривая распределения индукции в воздушном зазоре, называемая кривой поля машины.

2.4.2. Пульсирующее поле При питании синусоидальным током одной обмотки возникает магнитное поле, пульсирующее во времени с частотой. При синусоидальном распределении намагничивающей силы (рис. 2.20a). Рис. 2.20. Диаграмма распределения НС в воздушном зазоре (а) и годографы пространственного вектора НС прямого и обратного поля (б).

в каждой точке воздушного зазора, расположенной на расстоянии от оси обмотки, будет действовать намагничивающая сила, (2.26) где намагничивающая сила, расположенная на оси обмотки.

Это выражение можно преобразовать к виду:

(2.27) Каждый из членов этой суммы представляет собой вращающуюся или бегущую волну НС. В данном случае образуются две вращающиеся в противоположные стороны волны НС: прямая волна, вращающаяся по направлению вращения ротора электрической машины, и обратная волна, вращающаяся в противоположном направлении. Следовательно, пульсирующее поле можно представить в виде двух вращающихся в противоположные стороны полей, в каждом из которых максимальные значения результирующей НС и результирующей индукции в различные моменты времени остаются неизменными (рис. 2.20б). Если каждое из этих полей заменить пространственным вектором НС или индукции, то конец его будет описывать окружность, поворачиваясь на электрических градусов за один период изменения тока.

2.4.3. Круговое вращающееся магнитное поле Если на статоре электрической машины разместить трехфазную обмотку, у которой оси фаз (AX, BY, CZ) сдвинуты в пространстве на (рис. 2.21) Рис. 2.21. Расположение фазных обмоток на статоре двухполюсной трехфазной машины.

то при питании ее симметричным трехфазным током получим круговое вращающееся магнитное поле. На рис.2.21 фазовые обмотки для простоты показаны сосредоточенными, но распределение НС, образуемое каждой обмоткой, следует считать синусоидальным. Ввиду того, что в рассматриваемой обмотке фазы AX, BY и CZ смещены в пространстве на (), а токи в них сдвинуты во времени на (), получим следующие выражения для составляющих НС в точке x от каждой из фаз:

;

;

.

Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 18 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.