WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 |

http://www.masterconcrete.com/papers/reality.htm 

Каприелов С.С. др техн. наук, Батраков В.Г. др техн. наук, проф., Шейнфельд А.В. канд. техн. наук (НИИЖБ)

МОДИФИЦИРОВАННЫЕ БЕТОНЫ НОВОГО ПОКОЛЕНИЯ: РЕАЛЬНОСТЬ И ПЕРСПЕКТИВА

  Двадцатый век запомнится специалисту тем, что в области бетоноведения и, особенно, технологии бетона сделаны значительные шаги, изменившие первоначальные представления о материале, который был и остается наиболее массовым и важным в строительстве.

  Из многочисленных достижений науки о бетоне наиболее значимыми оказались те, которые углубили наши представления о процессах, происходящих на микроуровне и способствующих улучшению основных характеристик материала прочности, деформативности, долговечности. Среди них научное обоснование процессов гидратации цемента и формирования структуры цементного камня.

  В развитие теорий Ле Шателье и Михаэлиса проведены многочисленные исследования систем СSH и САН, которые позволили понять суть процессов, происходящих при гидратации цемента, формировании кристаллогидратов и структуры цементного камня.

  Современное представление заключается в том, что формирование структуры, согласно Байкову, разделяется условно на три стадии: растворения, коллоидную и кристаллизационную. На первой и второй стадиях, по Ребиндеру [1], наблюдается пептизация частиц и формирование коагуляционной структуры с обратимыми (восстанавливающимися) контактами между частицами твердой фазы и цементная система находится в пластичном состоянии, которое характеризуется реологическими параметрами. На третьей стадии формируется кристаллизационная структура с необратимыми фазовыми контактами и система находится в состоянии, которое характеризуется сопротивлением разрушающей нагрузке и деформативностью. Прочность фазовых контактов и, соответственно, структуры, по Тэйлору [2], во многом зависит от условий формирования кристаллогидратов при гидратации основного минерала цемента С3S, в частности, от соотношения С/S. Преобладание в структуре цементного камня более дисперсных и устойчивых гидросиликатов с соотношением С/SЈ1,1 является фактором повышенной прочности фазовых контактов кристаллизационной структуры и коррозионной стойкости цементного камня.

  На этом представлении основано другое важное достижение науки о бетоне, которое можно сформулировать как разработку научных основ защиты бетона и железобетона от коррозии и повышения его долговечности.

  Сегодня общепризнанно, что коррозионная стойкость бетона зависит от проницаемости цементного камня и бетона для жидких и газообразных агентов, а также реакционной способности цементного камня при воздействии тех же агрессивных агентов, т.е. от дифференциальной пористости и фазового состава цементного камня, соответственно. Кроме того, определена связь морозостойкости с другими параметрами структуры: объемом и размером условно замкнутых пор и фактором расстояния между ними.

  В развитии технологии бетона решающую роль сыграли сформированные в результате многочисленных исследований и подтвержденные практикой научные основы модифицирования бетонов добавкамимодификаторами цементных систем. Достаточно полное представление о теории и практике модифицирования бетонов дает недавно вышедшая в России монография [3]. Особого внимания заслуживает выявленная связь между строением молекул органических материалов, свойствами адсорбционных слоев и поведением цементных систем. Основываясь на этом и понимании процессов, происходящих в цементной системе, были созданы новые материалы для модифицирования цементных систем.

  С появлением суперпластификаторов (СП) и высокодисперсных кремнеземсодержащих материалов техногенного происхождения, прежде всего, микрокремнезема (МК) в технологии бетона произошел перелом. Значительный прогресс связан именно с совместным применением СП и МК. Оптимальное сочетание указанных добавок модификаторов, а, при необходимости, совмещение с ними в небольших количествах других органических и минеральных материалов позволяет управлять реологическими свойствами бетонных смесей и модифицировать структуру цементного камня на микроуровне так, чтобы придать бетону свойства, обеспечивающие высокую эксплуатационную надежность конструкций. Так появился термин: High Performance Concrete, под которым подразумеваются бетоны высокой (5580 МПа) и сверхвысокой (выше 80 МПа) прочности, низкой проницаемости, повышенной коррозионной стойкости и долговечности, полученные из пластичных смесей.



  В основе резкого изменения свойств бетонов происходящие в цементной системе сложные коллоиднохимические и физические явления, которые поддаются воздействию модификаторов и отражаются, в конечном счете, на фазовом составе, пористости, прочности и долговечности цементного камня [4]. Очевидно, поэтому специалисты относят производство таких бетонов к «высоким технологиям» [5].

  Остановимся на некоторых аспектах применения СП и МК, особенностях структуры модифицированного цементного камня и перспективах получения бетонов нового поколения.

  Суперпластификаторы.

  Появление СП в конце 60х начале 70х годов увенчало многолетнюю тенденцию «химизации» бетона применению в технологии различных добавок модификаторов, улучшающих те или иные свойства бетонных смесей и бетонов. Воздействуя на процессы формирования структуры, особенно на начальной, коагуляционной, стадии, СП изменяют реологические свойства цементной системы, способствуют сокращению ее водопотребности, что в дальнейшем отражается на параметрах кристаллизационной структуры.

  Благодаря СП изменились традиционные представления о бетоне и технологии его производства. В частности, оказалось возможным получать ранее недостижимые эффекты: с применением высокопластичных бетонных смесей (ОК>20 см) на обычных портландцементах и заполнителях достигать сравнительно высокой прочности (50 МПа) и пониженной проницаемости, сокращать расход цемента и энергоресурсов. Распространенные в настоящее время на рынке СП можно классифицировать по двум признакам: по природе (составу) материалов и по основному эффекту в механизме действия на цементные системы. Классификация по второму признаку представляется более убедительной, т.к. в связи с появлением различных новых материалов, обладающих свойствами СП, становится трудно группировать их в зависимости от состава.

  В табл. 1 приведена классификация СП с относительными стоимостными параметрами.

Таблица 1. Классификация и относительная стоимость СП Обозначение Классификация СП Относительная стоимость полимера в % по составу по основному эффекту в механизме действия НФ На основе сульфированных нафталинформальдегидных поликонденсатов электростатический МФ На основе сульфированных меламинформальдегидных поликонденсатов электростатический ЛСТ На основе очищенных от сахаров лигносульфонатов электростатический П На основе поликарбоксилатов и полиакрилатов статический   Обратим внимание на то, что в механизме действия СП типов НФ, МФ, ЛСТ преобладает эффект электростатического отталкивания частиц цемента и стабилизации, вызванный тем, что адсорбционные слои из молекул СП увеличивают величину дзета потенциала на поверхности цементных частиц. Отметим также, что величина дзета потенциала зависит от адсорбционной способности СП (чем выше величина адсорбции, тем больше абсолютная величина дзета потенциала, имеющего отрицательный знак).

  В механизме действия СП типа П роль дзета потенциала меньше, а взаимное отталкивание частиц цемента и стабилизация суспензии обеспечивается за счет преобладающего стерического эффекта. Такое различие многие специалисты связывают со строением молекул СП разных типов: НФ, МФ, ЛСТ характеризуются линейной формой полимерной цепи, для СП типа П характерны поперечные связи и двух или трехмерная форма [6, 7]. Именно поперечные звенья создают адсорбционную объемную защитную оболочку вокруг частиц твердой фазы, предотвращая слипание частиц и способствуя их взаимному отталкиванию. Следует отметить, что толщина адсорбционного слоя, как правило, больше, чем в случае с другими типами СП, а это значит, что в общем объеме свободной и адсорбционносвязанной воды в системе доля последней увеличивается.

  По некоторым данным силы взаимного отталкивания, вызываемые СП типа П, почти вдвое больше сил отталкивания, вызываемых МФ и НФ, и втрое больше сил, вызываемых ЛСТ [8]. Схематично электростатический и стерический механизм пластификации и стабилизации цементной суспензии показан на рис. 1. Благодаря таким особенностям, СП типа П более эффективны, что выражается в сравнительно низких оптимальных дозировках, низкой чувствительности к виду и составу цемента, в длительном сохранении бетонными смесями первоначальной консистенции и в их повышенной связности нерасслаиваемости. В то же время СП типа П наиболее дорогие материалы, что приводит к идее их совмещения с другими СП, тем более, что подобные комплексы по техническим эффектам превосходят распространенные типы СП.





  Высокодисперсные кремнеземсодержащие материалы техногенного происхождения. Микрокремнезем.

  В конце 80х годов комитет 73SBC RILEM представил вариант классификации минеральных добавок техногенного происхождения (табл. 2), которая выполнена по таким критериям, как пуццолановая активность и вяжущие свойства. Эта классификация позволяет оценить материалы с точки зрения их воздействия на цементные системы, поэтому представляется более объективной, чем обычная классификация минеральных добавок по их происхождению. Все материалы, представленные в классификации, имеют общий признак практически одинаковый качественный состав, но отличаются соотношением компонентов и степенью дисперсности. Преобладание диоксида кремния аморфной модификации и высокая дисперсность предопределяют высокую пуццолановую активность. Поэтому МК и зола от сжигания рисовой шелухи занимают в классификации особое место.

А.

Б.

Рис. 1. Электростатический (А) и стерический (Б) эффекты 1частицы цемента;

2молекулярная цепь;

3адсорбционный слой;

4поперечная полимерная цепь;

5продольная полимерная цепь.

Таблица 2. Классификация и характеристики кремнеземсодержащих материалов техногенного происхождения Классификация Химический и минералогический состав Физические характеристики 1. Обладающие вяжущими свойствами:

быстро охлажденные шлаки В основном силикатное стекло (аморфный кремнезем), содержащее оксиды кальция, магния, алюминия. Кристаллические компоненты могут присутствовать в небольшом количестве.

Представляет собой гранулы и содержит 515% влаги. Перед применением высушивается и измельчается до частиц размером менее 45 мкм, частицы имеют шероховатую поверхность. Удельная поверхность 350500 м2/кг.

2. Обладающие вяжущими и пуццолановыми свойствами:

высококальциевые золы уноса (Са>10%) В основном силикатное стекло (аморфный кремнезем), содержащее оксиды кальция, магния, алюминия. Кристаллические компоненты в виде кварца и С3А могут присутствовать в небольшом количестве. Могут присутствовать свободная известь и периклаз. Углерода обычно меньше 2%.

Содержит от 10 до 15% частиц размером более 45 мкм. Большая часть частиц имеет сферическую форму с диаметром менее 20 мкм. Поверхность частиц в основном гладкая, но не такая чистая, как у низкокальциевых зол уноса. Удельная поверхность 300400 м3/кг.

3. Обладающие высокой пуццолановой активностью:

микрокремнезем Состоит, в основном, из микрокремнезема некристаллической (аморфной) модификации.

Порошок, состоящий из сферических частиц диаметром менее 0.5 мкм. Удельная поверхность » 20 000 м2/кг.

золы рисовой шелухи Состоят в основном из кремнезема некристаллической (аморфной) модификации Частицы размером менее 45 мкм, но имеющие пористую поверхность. Удельная поверхность » 60 000 м3/кг.

4. Обладающие нормальной пуццолановой активностью:

низкокальциевые золы уноса (СаОa10%) В основном силикатное стекло (аморфный кремнезем), содержащее оксиды алюминия и железа. Кристаллические компоненты в основном в виде кварца, муллита, магнетита в небольшом количестве. Углерода обычно менее 5%, но иногда может быть 10%.

Содержит от 10 до 15% частиц более 45 мкм. Большая часть частиц имеет сферическую форму с диаметром около 20 мкм. Удельная поверхность 250350 м2/кг.

5. Прочие:

медленно охлажденные шлаки золы гидроудаления, шлаки котелен Содержат в основном кристаллические силикатные минералы и небольшое количество некристаллических компонентов.

Дополнительно измельчаются для придания вяжущих или пуццолановых свойств. Измельченные частицы имеют шероховатую поверхность.

Pages:     || 2 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.