WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 14 |

http://www.chat.ru/~ivanem/

Е.М. Иванов

К проблеме "вычислимости" функции сознания

 

Оглавление:

1. Геделевский аргумент.

2. Критика геделевского аргумента.

3. "Метафизические" аспекты проблемы вычислимости функции сознания.

  1. Геделевский аргумент.

Речь в данной работе пойдет о так называемом "геделевском аргументе", который используется как аргумент против возможности создания искусственного интеллекта. Суть аргумента заключается в следующем: полагают, что из теоремы К. Геделя о неполноте формальных систем вытекает принципиальное различие между искусственным ("машинным") интеллектом и человеческим умом, а именно, полагают, что теорема Геделя указывает на некоторое принципиальное преимущество человеческого ума перед "умом" машинным т.е. человек обладает способностью решать проблемы, принципиально неразрешимые для любых искусственных "интеллектуальных" систем (так называемые "алгоритмически неразрешимые" проблемы), причем ограниченность "искусственного ума" проистекает из его "формального" характера.

Заметим, что "геделевский аргумент"в настоящее время поддерживается рядом известных авторов (Дж. Лукас (1), Р. Пенроуз (2,3 ) и др.) и вызвал обширную научную дискуссию (см. (4 11)). Все это заставляет отнестись к данному аргументу серьезно и внимательно.

Прежде чем приступить к анализу собственно "геделевского аргумента", предварительно рассмотрим формулировку, способ доказательства и смысл самой теоремы К. Геделя о неполноте формальных систем. Формулировка теоремы такова: для достаточно выразительно "богатых" формальных систем (языков) достаточно "богатых" для того, чтобы с их помощью можно было сформулировать любые утверждения формализованной арифметики Пеано невозможно задать дедуктику (формализованную систему доказательств), которая одновременно обладала бы свойствами полноты (т.е. доказывала бы все содержательно истинные утверждения, которые можно сформулировать с помощью данного языка) и непротиворечивости (т.е. не доказывала бы некоторое суждение вместе с его отрицанием). Иными словами, теорема Геделя утверждает, что в такого рода "выразительных" формальных языках непременно найдутся истинные, но недоказуемые утверждения причем этот результат не зависит от конкретного выбора дедуктики. Это означает, что множество "содержательных" истин всегда превосходит по объему множество истин, доказуемых с помощью любой сколь угодно сложной формализованной системы доказательств.

Для того, чтобы понять смысл данной теоремы, необходимо прежде всего уточнить смысл понятий, входящих в ее формулировку. Прежде всего необходимо уточнить понятие "формальной системы" поскольку только к таким системам и имеет отношение рассматриваемая теорема. В самом общем плане формальная система это система подчиненная неким жестким, однозначно заданным правилам. Соответственно, "формализацию" можно определить как процедуру, цель которой дать предельно четкое, однозначное и исчерпывающее описание объекта, подлежащего формализации.

Для достижения этой цели, прежде всего, используется символическая форма записи тех правил, которым подчинена данная система. Таким образом, полностью формализованная научная теория должна представлять собой некоторую совокупность формул, записанных без всяких пояснительных слов или предложений, написанных на "естественном", неформализованном языке. Если при описании формальной системы и используются какието слова естественного языка, то лишь с дидактической целью, для пояснения но не как элементы самой формальной теории.

Использование символической записи предполагает фиксацию конечного набора символов, которые только и могут быть использованы для формулирования утверждений данной формальной системы (алфавит языка). Помимо набора символов задается также совокупность правил, указывающих как следует оперировать с данными символами (причем правила эти также записываются в символической форме).

Главное требование к формализму символы, используемые в данной формальной системе, должны принимать лишь те значения, которые им приписываются в явном виде в рамках заданного формализма. Эти фиксированные значения задаются через посредство правил, указывающих способ действия с тем или иным символам, а также через описание взаимных отношений между заданными символами.



Иногда говорят, что формализация полностью изгоняет всякий смысл. Говорят, что формальная система это система оперирующая символами, лишенными какойлибо семантической нагрузки. Т.е. семантика полностью заменяется синтаксисом. Это не совсем так.

Здесь нужно уточнить, что такое "смысл". Смысл (слова, предмета и т.п.) возникает в том случае, когда осмысляемое ставится в соответствие с чемто внешним, находящимся за пределами осмысляемого предмета (т.е. с "контекстом"). Отсюда вытекает определение смысла как "трансцендирования". Смысл всегда есть выход за пределы "актуально данного", "наличного". Когда говорят, что в полностью формализованной системы смысл полностью отсутствует, то имеют в виду, по существу, что в рамках заданного формализма запрещается всякое трансцендирование т.е. выход за пределы данного формализма. То есть для определения и использования символов формальной системы можно использовать только ту информацию, которая в явной форме содержится "внутри" данной формальной системы и никакую другую. Иными словами, формальная система должна быть "герметична", замкнута в себе. Все, что необходимо для работы с ней, для понимания ее выражений, содержится в ней самой.

Запрещая трансцендирование, мы лишаем формальную систему смысла как целое. Однако отдельные ее элементы и конструкции сохраняют смысл, который в этом случае определяется через соотнесение с другими элементами или конструкциями внутри заданной формальной системы. Таким образом, смысл не изгоняется полностью, но ограничивается рамками самой формальной системы и внутри данной формальной системы полностью эксплицируется, развертывается.

Смысл каждого элемента или конструкции определяется через то "место", которое они занимают внутри данной формальной системы. Это место должно быть задано в явной форме. Ничего не подразумевается. Не допускается никакая недосказанность или неопределенность.

Пока речь шла о формальных системах, понимаемых в самом широком смысле. Это могут быть либо какието совершенно произвольные "выдуманные" системы, либо формализованные модели какихто реальных (материальных) систем таких объектов, которые допускают исчерпывающее, четкое, однозначное, конечное описание своего способа функционирования (в виде системы правил, которым подчинены действия данной системы).

В этом последнем случае мы можем рассматривать формализацию как "итог" познавательного процесса, или как своего рода "идеал", к которому стремится наше познание. Возможность создания адекватной формализованной модели объекта указывает на то, что мы смогли получить исчерпывающую информацию о данном объекте. Неформализуемость же, напротив, указывает на неполноту наших знаний об объекте.

Далее, нам необходимо уточнить к какого рода формальным системам приложима теорема Геделя. Это так называемые "исчисления" или "дедуктивные системы". По существу, это ничто иное, как формализованные описания тех или иных дедуктивных математических теорий (например, формализованной арифметики, геометрии и т.п.).

Исчисления задаются следующим образом. Прежде всего задается формализованный язык данного исчисления. Для этого нужно определить алфавит и грамматику языка. Алфавит это набор символов (букв) допустимых в данном языке. Имея алфавит, мы можем составлять слова любые, сколь угодно длинные последовательности букв заданного алфавита.

Для того, чтобы выделить из множества всевозможных слов интересующие нас ("осмысленные") сочетания букв, вводится грамматика совокупность правил, позволяющих определить "правильно построенные слова" выражения. Правила грамматики вводят индуктивно: вначале определяются элементарные выражения, а затем указывается каким образом из них можно построить любые более сложные выражения.

Далее из множества выражений выделяют подмножество формул. Содержательно формулы это выражения, которые чтото утверждают (например, утверждают нечто о свойствах чисел или геометрических фигур). Формулы также определяются индуктивно.

Далее выделяют множество замкнутых формул или выражений. Это формулы, которые не имеют свободных параметров (т.е. параметров, которые могут принимать различные значения и не связаны кванторами всеобщности или существования). Это такие формулы, которым можно приписать определенное значение "истина" или "ложь". Обозначим множество замкнутых формул данного языка символом Б*.





Как уже говорилось, замкнутые формулы могут быть истинными или ложными (с содержательной точки зрения). Естественно потребовать, чтобы формализованная математическая теория включала в себя только содержательно истинные формулы. Истинность в математике определяется посредством доказательства. Таким образом следующий шаг введение формализованной системы доказательства дедуктики. С этой целью задается некоторое конечное множество замкнутых формул, истинность которых принимается без доказательств. Это аксиомы данной дедуктики. Далее задается конечное множество правил вывода, позволяющих из одних истинных формул получать другие истинные формулы.

Всякое формализованное доказательство это некоторое слово формального языка, представляющее собой цепочку формул, в которой каждая формула это либо аксиома, либо получена их аксиом посредством применения тех или иных правил вывода. Последняя формула в цепочке это и есть доказанное утверждение (теорема). Обозначим множество всех доказательств символом D*, а множество всех доказанных формул Иd*. Через И* обозначим множество содержательно истинных замкнутых формул данного языка.

Теорема Геделя о неполноте формальных систем утверждает, что для любой достаточно выразительно богатой формальной системы выполняется условие И* > Иd* и, следовательно, существует истинная недоказуемая формула. Это верно при условии, что заданная дедуктика непротиворечива, т.е. не позволяет одновременно доказывать некоторое утверждение и его отрицание.

Итак, теорема Геделя утверждает, что для любого достаточно выразительно богатого языка и для любой непротиворечивой дедуктики, заданной на этом языке, множество истинных формул всегда больше множества доказуемых формул. Это весьма нетривиальный вывод.

Задавая дедуктику, прежде всего стремятся получить такую систему доказательств, в которой выводимы все содержательно истинные формулы. Такие дедуктики называются полными. Для некоторых достаточно простых формальных языков (например для языка исчисления предикатов первого порядка) такая полная дедуктика вполне возможна. Но это не возможно для более сложных формальных языков, способных, в частности, выразить все истинные предложения формальной арифметики Пеано. Для такого рода языков невозможно задать полную и непротиворечивую дедуктику.

Каким же образом доказывается теорема Геделя? Мы рассмотрим здесь лишь общую схему доказательства (12).

Идея доказательства заключается в том, чтобы построить пример формулы, которая была бы недоказуема и, вместе с тем, содержательно истинна. Таковой являлась бы формула, содержательный смысл которой заключается в том, что она утверждает свою собственную недоказуемость, т.е. невыводимость из аксиом рассматриваемой формальной системы.

Для того, чтобы построить такую формулу, Гедель изобрел способ нумерации предложений формальной системы, который позволил однозначным образом приписать некоторый номер (натуральное число) каждому элементарному символу, формуле или доказательству данной формальной системы (так называемая "геделевская нумерация").

Используя геделевскую нумерацию можно построить формулу утверждающую недоказуемость формулы с номером n, где n номер самой этой формулы. По существу, геделевская нумерация задает специфический арифметический метаязык, на котором можно высказывать суждения о свойствах рассматриваемой дедуктивной системы в форме суждений о числах.

Обохзначим через Dem (x, y) метаязыковое выражение, означающее "последовательность формул с геделевским номером х является доказательством формулы с геделевским номером у". Навесим на х квантор общности и подвергнем Dem (x, y) отрицанию. В результате мы получим одноместный предикат:

(*) {для всех х не верно Dem (x, y)} который утверждает недоказуемость формулы с геделевским номером у.

Следующий шаг заключается в подстановке в (*) вместо "у" формального (метаязыкового) выражения для номера самой формулы (*).

Pages:     || 2 | 3 | 4 | 5 |   ...   | 14 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.