WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |

Глава 4. Математическое моделирование распространения задымления от торфяных пожаров

4.1. Математические модели загрязнения

атмосферного воздуха

В результате торфяных пожаров воздух перенасыщен продуктами горения торфа: в нем увеличивается не только содержание угарного и углекислого газов, но и несгоревших продуктов в виде мельчайших частиц полютантов. Понятно, что такую ситуацию очень плохо переносят люди, страдающие хроническими бронхолегочными заболеваниями: бронхиальной астмой, хроническим бронхитом, обструктивной болезнью легких. От увеличения в воздухе угарного и углекислого газов страдают и люди с проблемами сосудов головного мозга и сердца. В целом вред от смога, конечно, испытывают все.

Данные по выбросам в атмосферу вредных веществ при сжигании 1 тонны торфа натуральной влаги приведены в табл. 4.1.

Таблица 4.1 Продукты сгорания торфа Вещества Масса выброса (кг/т.натур. топл.) Твердые вещества (сажа, пыль неорганическая, SiO2) 32, Диоксид серы (SO2) 1, Оксид углерода (CO) 24, Диоксид азота(NO2) 1, Проблемы управления качеством окружающей среды неразрывно связаны с математическим моделированием процессов переноса и диффузии вредных примесей. Успех применения математических методов в решении отдельных задач во многом зависит от адекватности моделей, используемых для описания реальных процессов, протекающих в изучаемой среде. Разработке и использованию математических моделей загрязнения атмосферного воздуха посвящены работы [27, 29, 30, 31, 33, 35, 36, 64, 37, 45, 46 и др.].

Построение математической модели загрязнения окружающей среды упрощается при формализации процесса создания ее применительно к конкретному объекту. В общем случае в зависимости от задач, для решения которых применяются математические модели, их структуры, детализации изучаемого явления, и объема используемой эксперименталь­ной информации, математические модели загрязнения окружающей среды можно разделить на статистические и диффу­зионные. Каждый подход имеет свои достоинства и недостатки и во многом зависит от того, насколько адекватны ему условия изучаемого процесса загрязнения.

Еще в первых работах по атмосферной диффузии наметилось два подхода к теоретическим исследованиям распространения примеси в приземном слое воздуха. Один из них связывался с ра­ботой А. Робертса, основанной на решении уравнения турбулент­ной диффузии с постоянными коэффициентами. Другой подход, развитый О. Сеттоном, состоял в использовании для определения концентрации примеси от источника формул, полученных на статистической основе.

Согласно Сеттону [43], распределение примеси вблизи то­чечного источника в разных направлениях описывается гауссовским законом.

Первоначально Сеттон получил формулу для случая назем­ных источников, которая затем подтвердилась результатами на­блюдений в Нортоне (Англия) при равновесных условиях для сравнительно небольших расстояний (несколько сотен метров). Впоследствии эта формула была применена без достаточного обоснования и для случая высотного источника.

Статистические модели, или так называемые модели черного ящика, отличаются тем, что их структура и параметры определяют­ся на основе измерительной информации путем минимизации задан­ного критерия. Различают две основные группы таких моделей [47]: для первой характерно отсутствие априорных знаний о структуре модели, исследователь вырабатывает ее в результате последовательной проверки нескольких возможных структур; для второй структура модели может быть частично или полностью определена из соотношений материального баланса либо на основе ранее известных описаний процессов и явлений. Достоинство моделей данного класса простота и сравнительно малая чувствительность к случайным флуктуациям изучаемых объектов.

Статистические модели загрязнения воздуха строятся на основе прошлых данных и иногда без знания действительных физических процессов [30, 38, 39]. Используя эмпирический материал наблюдений, устанавливают корреляционные связи случаев высокой концентрации примеси с определенным сочетанием метеорологических условий. Однако статистические связи между загрязнением воздуха и метеорологическими параметрами не всегда оказываются достаточно тесными. Главным ограничением применения статистических моделей является то, что условия их использования могут отличатся от условий, в которых они были построены. Основные задачи, решаемые такими моделями, прогноз уровня загрязнения в местах, где отсутствуют станции наблюдения; прогноз частоты появления высоких значений концентраций и продолжительности высокого уровня загрязнения; определение установившегося значения концентраций в регионе при решении задач долгосрочного планирования.



Наибольшее распространение получили модели, осно­ванные на решении соответствующих дифференциальных уравнений диффузии примесей. Однако, поскольку объек­ты окружающей среды — весьма сложные системы с огромным коли­чеством взаимосвязанных параметров, оперативная оценка которых, как правило, затруднительна, точность детерминированных моделей ограничена. Они строятся на основе изучения физикохимических и биологических процессов в окружающей среде и отражают разви­тие этих процессов во времени. Достоинство их заключается в на­глядности причинноследственных связей в этих процессах.

Исполь­зование эффективно при решении частных, локальных в пространственном и временном масштабе задач. Вопрос о границах применения этих моделей до настоящего времени детально не изучен.

Существуют четыре основных типа моделей, основанных на решении уравнения диффузии численными методами.

Модель “клубка” содержит предположение о мгновенно действую щем источнике загрязнения. Процесс переноса образовавшегося облака из источника под действием ветра рассматривается в движущейся системе координат. К недостаткам модели относятся требование большого количества метеоданных (в частности замера скоростей ветра по трем координатам), сложность определения начальной высоты центра тяжести “клубка”, сложность программы расчетов.

Модель “факела” основана на предположении о непрерывно действующем источнике и предусматривает интегрирование фундаментального уравнения диффузии во времени. К модели предъявляются требования: однородность и стационарность метеороло гического поля в горизонтальном направлении; незначительные физические и химические преобразования загрязняющего вещества за время его пребывания в атмосфере; плоская подстилающая поверхность. Основные достоинства модели состоят в ее простоте и возможности расчета концентрационных полей по небольшому числу экспериментально определенных параметров. Однако точность прогноза по модели не высока. Модель “факела” наиболее эффективна для приподнятого источника (дымовой трубы высотой 100...200 м), а также для решения задач долгосрочного планирования на основе расчета концентрационных полей по частному распределению метеопараметров.

Модель “ящика” используется для грубой оценки концентрации загрязнителя с больших поверхностных источников [38]. При построении модели предполагается, что скорость ветра одинакова по высоте, а диффузия струи в поперечном и вертикальном направлениях мала. Эти условия соблюдаются при ограничении источника загрязнения воздуха зданиями, строениями, топографическими особенностями местности, инверсией. Кроме модели единственного “ящика”, известны варианты построения многоящичных моделей для оценки концентраций от распределенных источников эмиссии. В этих случаях атмосфера разбивается на систему “ящиков”, внутри которых концентрация не зависит от координат y и z, а частицы вещества не перемещаются относительно среды. Затем вычисляются потоки примеси между “ящиками” и концентрация в каждом из них. Снизу “ящики” ограничены поверхностью земли, сверху высотой инверсии или произвольно выбранной верхней границей.





Модели “конечноразностного” типа основаны на аппроксимации воздушного бассейна для получения численного решения трехмерными ячейками. Возникающие в этих моделях проблемы связаны с вопросами устойчивости, точности, с затратами времени и объема памяти ЭВМ. Ошибки вычислений часто значительны изза системы допущений (постоянство скорости ветра по высоте, отсутствие горизонтального переноса через границу выделенного объема и др.). Использование численных методов затруднено неоднородностью самого поля концентраций, достигающего максимального уровня вблизи источников и быстро убывающего с увеличением расстояния до них.

Модели, полученные на основе теории диффузии, имеют теоретическую и практическую ценность при изучении процессов распространения загрязняющих веществ в атмосфере [30, 34]. Однако их практическое применение затруднено, вопервых, изза свойственных им ограничений; вовторых, изза неопределенностей, содержащихся в метеопараметрах, топографии местности и т.п.

Описание переноса примеси с помощью уравнения турбулент­ной диффузии относится обычно к фиксированной в простран­стве системе координат и связано, таким образом, с эйлеровыми характеристиками. При статистическом описании процессов ат­мосферной диффузии большей частью исходят из лагранжевой системы координат. Для установления связи между двумя ука­занными подходами важно изучить соотношение между лагранжевыми и эйлеровыми характеристиками турбулентной среды.

В работах, проводившихся в СССР, большей частью изби­рался путь решения уравнения турбулентной диффузии. Такой подход является более универ­сальным, позволяющим исследовать задачи с источниками раз­личного типа, разными характеристиками среды и граничными условиями. Эти обстоятельства весьма существенны для развития практического использования результатов теории, в том числе и нормирования выбросов.

4.2. Методы оценки загрязнения атмосферы и их связь с действующей нормативной базой Атмосферный воздух как аэродисперсная система содержит в переменных количествах различные примеси природного и антропоген ного происхождения. Загрязненным принято называть воздух, со держащий примеси, состав которых и концентрации могут причинять ущерб человеку и объектам окружающей среды фауне, флоре, строениям и т. д.

Загрязнители в воздухе могут находится в газообразном и взвешенном состоянии в виде жидких и твердых аэрозолей. Загрязняющие примеси в воздухе могут иметь естественное и антропогенное происхождение, образовываться в результате химических (фото­хими­чес­ких) реакций взаимодействия в атмосфере. Продукты химических превращений в атмосфере могут оказаться в экологическом отношении более опасными, чем исходные химические вещества.

Уровень загрязненности воздуха зависит от метеорологических условий: температуры и влажности, направления и скорости преобла дающих ветров, инверсии температуры и т.д. Соответственно физическим характеристикам воздуха изменяется физическая и химическая активность содержащихся в нем загрязняющих веществ.

Установление стандартов качества воздуха требует определения допустимых уровней. Нормирование допустимого содержания химических факторов основано на представлении о наличии порогов в их действии [40]. Значения пороговых концентраций являются относительными и зависят от множества причин как физических (агрегатного состояния вещества, среды, режима, длительности поступления и т. п.), так и биологических (физиологического состояния организма, возраста, пути поступления и др.). В разных странах неодинаково подходят к вопросу о месте приложения нормативов загрязнения: в одних странах нормативы устанавливаются на выброс вредных веществ в атмосферный воздух, в других на качество сырья, в третьих на качество воздуха, т. е. условия пребывания людей в жилых районах и производственных помещениях [39].

Pages:     || 2 | 3 | 4 | 5 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.