WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 11 |

Глава 15. Центральная нервная система

Центральная нервная система (ЦНС) — это совокупность нерв­ных образований спинного и головного мозга, обеспечивающих вос­приятие, обработку, передачу, хранение и воспроизведение инфор­мации с целью адекватного взаимодействия организма и изменений окружающей среды, организации оптимального функционирования органов, их систем и организма в целом.

Центральная нервная система человека представлена спинным, продолговатым, средним, промежуточным мозгом, мозжечком, базальными ганглиями и корой головного мозга. Каждая из этих структур имеет морфологическую и функциональную специфику. Но, наряду с этим, у всех структур нервной системы есть ряд общих свойств и функций, к которым относятся: нейронное строение, электрическая или химическая синаптическая связь между нейрона­ми; образование локальных сетей из нейронов, реализующих специ­фическую функцию; множественность прямых и обратных связей между структурами; способность нейронов всех структур к воспри­ятию, обработке, передаче, хранению информации; преобладание числа входов для ввода информации над числом выходов для вы­вода информации; способность к параллельной обработке разной информации; способность к саморегуляции; функционирование на основе рефлекторного доминантного принципа.

15.1. Нейрон и нейроглия Функции нейрона. Структурной и функциональной единицей нервной системы является нервная клетка нейрон. Это — специали­зированные клетки, способные принимать, обрабатывать, кодиро­вать, передавать и хранить информацию, реагировать на раздраже­ния, устанавливать контакты с другими нейронами, клетками орга­нов. Уникальными особенностями нейрона являются способность генерировать электрические разряды и наличие специализированных окончаний — синапсов, служащих для передачи информации.

Число нейронов мозга человека приближается к 1011, на одном нейроне может быть 10000 синапсов, в каждом нейроне до 100000 нейротрубочек. Если только эти элементы считать ячейками хране­ния информации, то нервная система может хранить 1019 единиц информации, что достаточно, чтобы вместить в ней практически все знания, накопленные человечеством. Поэтому вполне обосновано представление о способности человеческого мозга в течение жизни запоминать все, что происходит с организмом. Мозг, однако, не способен извлекать из памяти всю информацию, которая в нем хранится.

Функционально нейрон состоит из следующих частей: восприни­мающей — дендриты, мембрана сомы нейрона; интегративной — сома с аксонным холмиком; передающей —аксонный холмик с ак­соном.

Дендриты — основная воспринимающая часть нейрона. Мембрана дендрита и тела клетки способна реагировать на медиаторы, выде­ляемые мембраной аксонных окончаний. Обычно нейрон имеет несколько ветвящихся дендритов. Необходимость такого ветвления обусловлена тем, что нейрон, как информационная структура, дол­жен иметь большое количество входов. Информация поступает к нему от других нейронов через специализированные контакты, так называемые шипики, которые обеспечивают восприятие сигналов нейроном. Чем сложнее функция структуры нервной системы, чем больше различных анализаторов посылают информацию к данной структуре, тем больше шипиков на дендритах нейронов. Больше всего их на пирамидных нейронах двигательной коры — здесь ко­личество шипиков достигает нескольких тысяч и занимает до 43% поверхности мембраны сомы и дендритов.

Двигательные пирамидные нейроны получают информацию прак­тически от всех сенсорных систем, ряда подкорковых образований, от ассоциативных систем мозга. Если шипик или группа шипиков длительный период времени не получают информацию, то они ис­чезают.

Сома нейрона заключена в специализированную многослойную мембрану, обеспечивающую формирование и распространение элект­рического потенциала к аксонному холмику. Сома, помимо инфор­мационной, несет трофическую функцию, обеспечивает рост денд­ритов и аксона. Она содержит рибосомы, лизосомы, вещество Ниссля (тигроид), аппарат Гольджи, пигменты, микротрубочки, мито­хондрии и др.

Рибосомы располагаются вблизи ядра и осуществляют синтез белка на матрицах транспортной РНК. Рибосомы нейронов вступают в контакт с эндоплазматической сетью аппарата Гольджи и образуют тигроид.

Тигроид содержит РНК и участвует в синтезе белковых компо­нентов клетки. Длительное раздражение нейрона приводит к исчез­новению в клетке тигроида, а значит — к прекращению синтеза специфического белка.



Аппарат Гольджи — органелла нейрона, окружающая ядро в виде сети, участвует в синтезе нейросекреторных и других физиологичес­ки активных соединений клетки.

Лизосомы — обеспечивают гидролиз в нейроне. Пигменты нейро­нов — меланин и липофусцин находятся в черном веществе сред­него мозга, в ядрах блуждающего нерва, клетках симпатической системы.

Митохондрии — органеллы, обеспечиваюшие энергетические по­требности нейрона. Их больше всего у наиболее активных его час­тей: аксонного холмика, в синапсах. При активной деятельности нейрона количество митохондрий возрастает.

Микротрубочки — обычно их до 100 тысяч в нейроне, они про­низывают его сому и функционально связаны с хранением и пере­дачей информации в нейроне.

Ядро при активации нейрона увеличивает свою поверхность за счет выпячиваний, что усиливает ядерноплазматические отноше­ния, стимулирующие функции нервной клетки. Ядро нейрона со­держит генетический материал. Генетический аппарат контролирует дифференцировку клетки, ее конечную форму, типичные для этой клетки связи. Ядро регулирует также синтез белка нейрона в тече­ние всей его жизни.

Функционально нейроны делят на три типа: афферентные, про межуточные и эфферентные. Первые — выполняют функцию полу­чения и передачи информации в вышележащие структуры ЦНС, вторые — обеспечивают взаимодействие между нейронами одной структуры, третьи — за счет длинного аксона передают информацию в нижележащие структуры ЦНС, в нервные узлы, лежащие за ее пределами, и в органы организма. По форме нейроны делят на моно, би и мультиполярные. По химической характеристике вы­деляемых в окончаниях аксонов веществ, отличают нейроны: холинэргические, пептидэргические, норадреналинэргические, дофаминэргические, серотонинэргические и др.

Важной характеристикой нейронов является их чувствительность к разным раздражителям. По этому признаку нейроны делят на моно, би и полисенсорные. Моносенсорные нейроны располагают­ся чаще в первичных проекционных зонах коры и реагируют только на сигналы своей модальности. Например, значительная часть ней­ронов первичной зрительной коры реагирует только на световое раздражение сетчатки глаза. Бисенсорные нейроны располагаются преимущественно во вторичных зонах коры анализатора и могут реагировать как на сигналы своей, так и на сигналы другой мо­дальности. Например, нейроны вторичной зрительной коры реаги­руют на зрительные и слуховые раздражения. Полисенсорные ней­роны — это чаще всего нейроны ассоциативных зон мозга. Они способны реагировать на раздражение слуховой, зрительной, кожной и др. анализаторных систем.

Нервные клетки разных отделов нервной системы могут разря­жаться при отсутствии сенсорных раздражителей — спонтанноактивные, или фоновоактивные, их в коре около 3%. Существуют также молчащие нейроны, реагирующие импульсами только в ответ на какоелибо раздражение.

Фоновоактивные нейроны делят на тормозящиеся — урежающие частоту разрядов и возбуждающиеся — учащающие частоту разрядов в ответ на какоелибо раздражение (рис.15.1). Фоновоактивные нейроны могут генерировать импульсы непрерывно, с замедлением или увеличением частоты разрядов. Это так называемый непрерыв Рис.15.1. Виды фоновой активности нейронов.

А — пачечная, В — групповая, В — непрерывноаритмическая (тоническая) активность.

ноаритмичный тип активности. Фоновоактивные нейроны обеспе­чивают тонус нервных центров, поддерживают уровень возбуждения коры и других структур мозга. Кроме того, так как даже самые слабые воздействия изменяют частоту импульсации, такие нейроны сигнализируют о приходе к ним возбуждающих или тормозящих сигналов. Число фоновоактивных нейронов увеличивается в бодр­ствующем состоянии.

Некоторые фоновоактивные нейроны выдают группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группапачка импульсов. Этот тип активности называется пачечным типом. Пачечный тип активности создает условия для проведения сигналов при снижении функци­ональных возможностей проводящих или воспринимающих структур мозга. Межимпульсные интервалы в пачке приблизительно равны 13 мс, между пачками этот интервал варьирует в пределах 15 120 мс.





Третья форма фоновой активности — групповая активность. Групповой тип активности характеризуется апериодическим появле­нием в фоне группы импульсов (межимпульсные интервалы колеб­лются от 3 до 30 мс), затем близким по времени периодом мол­чания. Мембрана нейрона имеет активную систему обмена Na+ и К+ между внутренней и внешней средой клетки. Перераспределение ионов создает заряд мембраны нейрона, близкий к 70 мВ. Фоновый заряд мембраны может быть увеличен или снижен. Увеличение за­ряда мембраны называется гиперполяризацией и происходит под воз­действием тормозных синапсов, оканчивающихся на данном нейро­не. Снижение заряда мембраны нейрона называется деполяризацией и происходит под воздействием возбуждающих синапсов. При опре­деленном уровне деполяризации мембраны, который называется кри­тическим уровнем и обычно равен 4050 мВ, происходит разряд нейрона, возникает потенциал действия.

После достижения критического уровня деполяризации дальней­шие события развиваются независимо от того, продолжается или нет раздражение (рис. 15.2). В этом случае заряд мембраны начинает падать, проходит нулевой уровень и затем увеличивается, но с об­ратным знаком, т.е. происходит перезаряд мембраны — его инвер­сия. Через доли миллисекунд заряд мембраны возвращается к ис­ходному.

Рис. 15.2. Возможные состояния нейрона.

1 — поляризация, 2 — гиперполяризация, 3 — деполяризация;

МП — мембранный потенциал, ТПСП — тормозящий постсинаптический потенциал, ПД — потенциал действия.

Амплитуда потенциала действия зависит от уровня исходного заряДа мембраны, но не зависит от силы раздражения мембраны. Необходимо, чтобы раздражение снизило заряд мембраны до кри­тического уровня. Деполяризация является толчком для включения внутриклеточного механизма, обеспечивающего генерацию потенциа­ла действия по закону "все или ничего".

В нервной клетке при развитии потенциала действия возникает период рефрактерности или невозбудимости. Это явление заключа­ется в том, что на фоне потенциала действия и еще некоторое время после его завершения, нельзя вызвать второй разряд клетки, невзирая на силу применяемого раздражения. Время, в течение которого нервная клетка невозбудима, называется абсолютной рефрактерностью. Затем клетка приобретает возможность реагировать на прилагаемые раздражения, но впервые возникающий после пе­риода абсолютной рефрактерности потенциал имеет меньшую амп­литуду, так как возникает при меньшем уровне заряда мембраны Периоды появления неполных ответов называются периодами отно­сительной рефрактерности. У двигательных нейронов спинного мозга рефрактерность длится примерно 2 мс. Следовательно, частота их разрядов может составлять до 550 имп/с. Промежуточные нейроны имеют частоту разрядов более 1000 имп/с, так как их рефрактер­ность менее 1 мс.

Функции нейроглии. Глия — структура нервной системы, обра­зованная специализированными клетками различной формы, которые заполняют пространства между нейронами или капиллярами, со­ставляя 10% объема мозга. Размеры глиальных клеток в 34 раза меньше нервных, число их в центральной нервной системе млеко­питающих достигает 140 млрд. С возрастом число нейронов в мозгу уменьшается, а число глиальных клеток увеличивается.

Различают следующие виды глии: астроглия, олигодендроглия, микроглия. Количество разных форм глиальных клеток зависит от структуры центральной нервной системы (табл. 15.1).

Таблица 15.1 Количество глиальных элементов в структурах мозга, в % Виды глии Кора Мозолистое тело Ствол мозга Астроглия 61. Олигодендроглия Микроглия 9. Астроглия — представлена многоотростчатыми клетками. Их раз­меры колеблются от 7 до 25 мкм. Большая часть отростков закан­чивается на стенках сосудов. Ядра содержат ДНК, протоплазма имеет аппарат Гольджи, центрисому, митохондрии. Астроглия служит опо­рой нейронов, обеспечивает репаративные процессы нервных ство­лов, изолирует нервное волокно, участвует в метаболизме нейронов.

Олигодендроглия — это клетки, имеющие один отросток. Количе­ство олигодендроглии возрастает в коре от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендроглии больше, чем в коре. Она участвует в миелинизации аксонов, в метаболизме нейронов.

Pages:     || 2 | 3 | 4 | 5 |   ...   | 11 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.