WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 7 |

Глава 10. Обмен веществ и энергии. Питание.

Обмен веществ и энергии — это совокупность физических, хими­ческих и физиологических процессов превращения веществ и энер­гии в организме человека и обмен веществами и энергией между организмом и окружающей средой. Непрерывно идущий между ор­ганизмом и окружающей средой обмен веществ и энергией является одним из наиболее существенных признаков жизни.

Для поддержания процессов жизнедеятельности обмен веществ и энергии обеспечивает пластические и энергетические потребности организма. Это достигается за счет извлечения энергии из поступа­ющих в организм питательных веществ и преобразования ее в фор­мы макроэргических (АТФ и другие молекулы) и восстановленных (НАДФ'Н — никотин амид адениндинуклеотидфосфат) соединений. Их энергия используется для синтеза белков, нуклеиновых кислот, липидов, а также компонентов клеточных мембран и органелл клет­ки, для выполнения механической, химической, осмотической и электрической работ, транспорта ионов. В ходе обмена веществ в организм доставляются пластические вещества, необходимые для биосинтеза, построения и обновления биологических структур.

В обмене веществ (метаболизме) и энергии выделяют два взаи­мосвязанных, но разнонаправленных процесса: анаболизм, основу которого составляют процессы ассимиляции, и катаболизм, в основе которого лежат процессы диссимиляции.

Анаболизм — это совокупность процессов биосинтеза органических веществ, компонентов клетки и других структур органов и тканей. Анаболизм обеспечивает рост, развитие, обновление биологических структур, а также непрерывный ресинтез макроэргов и накопление энергетических субстратов.

Катаболизм — это совокупность процессов расщепления сложных молекул, компонентов клеток, органов и тканей до простых веществ, с использованием части из них в качестве предшественников биосин­теза, и до конечных продуктов распада с образованием макроэргичес­ких и восстановленных соединений. Взаимная связь основных функ­циональных элементов метаболизма представлена на рис. 10.1.

На схеме видно, что взаимосвязь процессов катаболизма и ана­болизма основывается на единстве биохимических превращений, обеспечивающих энергией все процессы жизнедеятельности и по­стоянное обновление тканей организма. Движущей силой жизнеде­ятельности служит катаболизм. Сопряжение анаболических и ката Рис.10.1. Схема основных функциональных блоков метаболизма клетки (пояснения в тексте) болических процессов могут осуществлять различные вещества, но главную роль играют АТФ, НАДФН. В отличие от других посред­ников метаболических превращений АТФ циклически рефосфорилируется, а НАДФ • Н — восстанавливается.

Обеспечение энергией процессов жизнедеятельности осуществля­ется за счет анаэробного и аэробного катаболизма поступающих в организм с пищей белков, жиров и углеводов. В ходе анаэробного сбраживания глюкозы (гликолиза) или ее резервного субстрата гли­когена (гликогенолиза) превращение 1 моля глюкозы в 2 моля лактата приводит к образованию 2 молей АТФ. Энергии, образующейся в ходе анаэробного обмена, недостаточно для осуществления про­цессов жизнедеятельности животных организмов. За счет анаэроб­ного гликолиза могут удовлетворяться лишь ограниченные кратко­временные энергетические потребности клетки. Известно, напри­мер, что зрелый эритроцит млекопитающих полностью удовлетворяет свои энергетические нужды за счет гликолиза.

В организме животных и человека в процессе аэробного обмена почти все органические вещества, в том числе продукты анаэроб­ного обмена, полностью распадаются до СО2 и Н2О. Общее коли­чество молекул АТФ, образующихся при полном окислении 1 моля глюкозы до СО2 и Н2О, составляет 25,5 молей. При полном окис­лении молекулы жиров образуется большее количество молей АТФ, чем при окислении молекулы углеводов. Так при полном окислении 1 моля пальмитиновой кислоты образуется 91,8 молей АТФ. Коли­чество молей АТФ, образующихся при полном окислении амино­кислот и углеводов, примерно одинаково. АТФ играет в организме роль внутренней "энергетической валюты", переносчика и аккумуля­тора химической энергии.

Основным источником энергии восстановления для реакции био­синтеза жирных кислот, холестерина, аминокислот, стероидных гор­монов, предшественников синтеза нуклеотидов и нуклеиновых кис­лот является НАДФ • Н. Образование этого вещества осуществляется в цитоплазме клетки в процессе фосфоглюконатного пути катабо­лизма глюкозы. При таком расщеплении 1 моля глюкозы образуется 12 молей НАДФН.



Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия или превалирования одного из них. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к частичному разрушению тканевых структур, выделению энергии. Состояние равновесного или нерав­новесного соотношения анаболизма и катаболизма зависит от воз­раста (преобладание анаболизма в детском возрасте, равновесие у взрослых, преобладание катаболизма в старческом возрасте), состо­яния здоровья, выполняемой организмом физической или психоэмо­циональной нагрузки.

10.1. Роль обмена веществ в обеспечении пластических потребностей организма.

Потребность организма в пластических веществах может быть удовлетворена тем минимальным уровнем их потребления с пищей, который будет уравновешивать потери структурных белков, липидов и углеводов при поддержании энергетического баланса. Эти потреб­ности индивидуальны и зависят от таких факторов, как возраст человека, состояние здоровья, интенсивность и вид труда.

Человек получает из окружающей среды в составе пищевых про­дуктов заключенные в них энергию и пластические вещества, ми­неральные ионы и витамины.

Белки. Потребность в белке определяется минимальным количе­ством пищевого белка, который будет уравновешивать потери орга­низмом азота, при сохранении энергетического баланса. Белки на­ходятся в состоянии непрерывного обмена и обновления. В орга­низме здорового взрослого человека количество распавшегося за сутки белка равно количеству вновь синтезированного. Животные существа могут усваивать азот только в составе аминокислот, посту­пающих в организм с белками пищи. Десять аминокислот из 20 (валин, лейцин, изолейцин, лизин, метионин, триптофан, треонин, фенилаланин, аргинин и гистидин) в случае их недостаточного по­ступления с пищей не может быть синтезирована в организме. Эти аминокислоты называют незаменимыми. Другие десять аминокислот (заменимые) не менее важны для жизнедеятельности, чем незаме­нимые, но в случае недостаточного поступления с пищей заменимых аминокислот они могут синтезироваться в организме. Важным фак тором обмена белков организма является повторное использование (реутилизация) аминокислот, образовавшихся при распаде одних белковых молекул, для синтеза других.

Из аминокислот, источниками которых являются белки пищи, и аминокислот, образующихся в организме, синтезируются свойствен­ные ему белковые молекулы,пептидные гормоны, коэнзимы. В этом заключается пластическая роль белков пищи.

Скорость распада и обновления белков организма различна. Полу­период распада гормонов пептидной природы составляет минуты или часы, белков плазмы крови и печени около 10 суток, белков мышц около 180 суток. В среднем белки организма человека обновляются за 80 суток. О суммарном количестве белка, подвергшегося распаду за сутки, судят по количеству азота, выводимого из организма че­ловека. В белке содержится около 16% азота или в 100 г белка — 16 г азота. Таким образом, выделение организмом 1 г азота соот­ветствует распаду 6,25 г белка. За сутки из организма взрослого человека выделяется около 3,7 г азота. Из этих данных следует, что масса белка, подвергшегося за сутки полному разрушению состав­ляет 3,7 х 6,25 = 23 г или 0,0280,075 г азота на 1 кг массы тела в сутки (коэффициент изнашивания по Рубнеру).

Если количество азота, поступающего в организм с пищей, равно количеству азота выводимого из организма, принято считать, что организм находится в состоянии азотистого равновесия. В случаях, когда в организм поступает азота больше, чем его выделяется, го­ворят о положительном азотистом балансе (задержка, ретенция азо­та). Такие состояния бывают при увеличении массы мышечной тка­ни, в период роста организма, беременности, выздоровления после тяжелого истощающего заболевания.

Состояние, при котором количество выводимого из организма азота превышает его поступление в организм, называют отрицательным азотистым балансом. Оно имеет место при питании неполноценными белками, когда в организм не поступают какиелибо из незаменимых аминокислот, при белковом голодании или при полном голодании.





Белки, использующиеся в организме в первую очередь в качестве пластических веществ, в процессе их разрушения освобождают энер­гию для синтеза АТФ и образования тепла.

Консультативным совещанием экспертов Всемирной организации здравоохранения рекомендуется потребление белка не менее 0.75 г/кг/ сутки или для взрослого здорового человека массой 70 кг не менее 52,5 г легкоусвояемого полноценного белка в сутки.

Липиды. Липиды организма человека — это, главным образом, нейтральные сложные эфиры глицерина и высших жирных кис­лот — триглицериды, фосфолипиды и стерины. Высшие жирные кислоты, входящие в состав сложных липидных молекул в виде углеводородных радикалов, бывают насыщенными и ненасыщенны­ми, содержащими одну и более двойных связей. Липиды играют в организме энергетическую и пластическую роль. По сравнению с молекулами углеводов и белков молекула липидов является более восстановленной. Поэтому при окислении липидов в организме образуется больше молекул АТФ и тепла. За счет окисления жиров обеспечивается около 50% потребности в энергии взрослого орга­низма. В отличие от белков, которые не образуют специальных запасных форм, служащих источником энергии, запасы нейтральных жиров триглицеридов в жировых депо человека в среднем состав­ляют 1020% массы его тела. Из них около половины локализуется в подкожной жировой клетчатке. Кроме того, значительные запасы нейтрального жира откладываются в большом сальнике, околопочеч­ной клетчатке, в области гениталий и между мышцами. Жиры, откладываясь в жировых депо, служат долгосрочным резервом пи­тания организма.

Жиры являются источником образования эндогенной воды. При окислении 100 г нейтрального жира в организме образуется около 107 г воды.

Если основную роль в удовлетворении энергетических потребностей организма играют нейтральные молекулы жира — триглицериды, то пластическая функция липидов в организме осуществляется, главным образом, фосфолипидами, холестерином, жирными кислотами. Эти липидные молекулы выполняют функции структурных компонентов клеточных мембран, липопротеидов, являются предшественниками син­теза стероидных гормонов, желчных кислот и простагландинов.

Клеточные липиды. В состав клеточных липидов входят фосфолипиды и холестерин, являющиеся необходимыми структурными компонентами поверхностной и внутриклеточных мембран. Тригли­цериды откладываются в клетках в виде жировых капель, формируя жировые депо. Последние являются не инертной массой, а активной динамической тканью, в которой запасенные жиры подвергаются постоянному расщеплению и ресинтезу. При действии на организм холода, в состоянии голода, при физической или психоэмоциональ­ной нагрузке происходит интенсивное расщепление (липолиз) запа­сенных триглицеридов. Образующиеся при этом неэстерифицированные жирные кислоты используются в организме как энергодающие или как пластические вещества, необходимые для синтеза сложных липидных молекул. В условиях покоя после приема пищи происходит ресинтез и отложение нейтральных липидов в подкож­ной жировой клетчатке, брюшной полости, мышцах.

Бурый жир. В межлопаточной области, вдоль крупных сосудов грудной и брюшной полостей, в затылочной области шеи находится жировая ткань бурого вида. Такой оттенок ей придают более много­численные, в сравнении с белой жировой тканью, окончания сим­патических нервных волокон, а также многочисленные митохондрии, содержащиеся в клетках этой ткани. Масса бурой жировой ткани достигает у взрослого 0,1 % массы тела. У детей содержание бурого жира больше, чем у взрослых. В митохондриях жировых клеток имеется полипептид молекулярной массой 32000, способный разоб­щать идущие здесь процессы окисления и образования АТФ. Ре зультатом такого разобщения является образование в бурой жировой ткани в ходе метаболизма жира значительно большего количества тепла, чем в белой жировой ткани. Бурая жировая ткань играет роль не только в теплопродукции, но и в поддержании на отно­сительно постоянном уровне массы тела.

Pages:     || 2 | 3 | 4 | 5 |   ...   | 7 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.