WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 |

Глава 4. Основные характеристики мышечной деятельности

4.1. Скелетные мышцы.

Скелетные (поперечнополосатые) мышцы — это "машины", пре­образующие химическую энергию непосредственно в механическую и тепловую. Сокращение мышц возникает в ответ на электрические импульсы, приходящие к ним от а мотонейронов — нервных кле­ток, лежащих в передних рогах спинного мозга. Мышцы и иннервирующие их мотонейроны составляют нервномышечный аппарат человека. В результате сократительной деятельности скелетных мышц осуществляется поддержание позы человека, перемещение частей тела относительно друг друга, передвижение человека в пространстве.

Основным морфофункциональным элементом нервномышечного аппарата является двигательная единица (ДЕ). ДЕ — это мотоней­рон с иннервируемыми им мышечными волокнами. Аксон мотоней­рона из спинного мозга проходит в составе периферических нервов до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка заканчивается на одном мышеч­ном волокне, образуя нервномышечный синапс. Импульсы, идущие по аксону мотонейрона, активируют все иннервируемые им мышеч­ные волокна. Поэтому ДЕ функционирует как единое морфофункциональное образование.

Скелетная мышца состоит из пучков вытянутых в длину клеток — мышечных волокон, обладающих тремя свойствами: возбудимостью, проводимостью и сократимостью (см.главу I). Отличительной чертой мышечных клеток от клеток, не обладающих свойством сократимос­ти, является наличие саркоплазматического ретикулума. Он пред­ставляет собой замкнутую систему внутриклеточных трубочек и цис­терн, окружающих каждую миофибриллу. В мембране саркоплазма­тического ретикулума находятся две транспортные системы, обеспе­чивающие освобождение от ретикулума ионов кальция при возбуж­дении и их возврат из миоплазмы обратно в ретикулум при рас­слаблении мышцы. В механизме освобождения ионов кальция из ретикулума при возбуждении мышечной клетки важную роль играет система поперечных трубочек (Тсистема), представляющих собой впячивания поверхностной мембраны мышечного волокна. К проти­воположным сторонам поперечной трубочки примыкают боковые цистерны ретикулума. Две терминальные цистерны ретикулума вместе с трубочкой образуют так называемую триаду — анатомическую структуру, в зоне которой нервные импульсы, распространяющиеся по поперечным трубочкам вглубь мышечного волокна, запускают процесс выхода ионов кальция из саркоплазматического ретикулума и, следовательно, всю последующую цепочку изменений, приводя­щую, в конечном итоге, к развитию сокращения мышцы.

Мышечные волокна имеют диаметр от 10 до 100 мкм и длину от 5 до 400 мм (в зависимости от длины мышцы). В каждом мышечном волокне содержится до 1000 и более сократительных элементов миофибрилл, толщиной 13 мкм. Каждая миофибрилла состоит из мно­жества параллельно лежащих толстых и тонких нитей — миофиламентов. Толстые нити состоят из молекул белка миозина, а тонкие — из белка актина. Миозиновые нити имеют отходящие от них биполярно поперечные выступы около 20 нм, с головками, состоящими примерно из 150 молекул миозина. Во время сокращения каждая головка ми­озина, или поперечный мостик, может связывать миозиновую нить с соседней актиновой. Кроме того, в состав тонких нитей входят еще два белка — тропонин и тропомиозин, необходимые для развития процессов сокращения и расслабления мышцы.

Расположение миозиновых и тонких актиновых белковых нитей строго упорядочено (рис.4.1.). Пучок лежаших в середине саркомера нитей миозина выглядит в световом микроскопе как темная полос­ка. Благодаря свойству двойного лучепреломления в поляризованном свете (то есть анизотропии) она называется Адиском. По обе сто­роны от Адиска находятся участки, которые содержат только тон­кие нити актина и поэтому выглядят светлыми. Эти изотропные Jдиски тянутся до Zпластин. Благодаря такому периодическому че­редованию светлых и темных полос миофибриллы скелетной мышцы Рис.4.1. Схема саркомера мышечного волокна и взаимного расположения толстых миозиновых и тонких актиновых миофиламентов.

Поперечный срез миофибриллы дает представление о гексагональном распределении актиновых и миозиновых нитей.



Z — линии, разделяющие два соседних саркомера;

J — изотропный диск;

А — анизотропный диск;

Н — участок с уменьшенной анизотропностью.

выглядят исчерченными (поперечнополосатыми). Если мышца рас­слаблена, то в средней части Адиска различается менее плотная Н зона, состоящая только из толстых миофиламентов. Н зона не просматривается во время сокращения мышцы. По середине Jдиска проходит темная полоска — это Z линия. Участок миофибриллы между двумя Z линиями называется саркомером.

Передача возбуждения в нервномышечном синапсе. Структура нервно мышечного синапса представлена на рисунке 4.2. В процес­се передачи возбуждения с нерва на мышечные волокна выделяют три последовательных процесса: 1. электрический, включащий до­стижение нервным импульсом концевой веточки аксона, деполяри­зацию и повышение проницаемости ее мембраны, выделение ацетилхолина (АХ) в синаптическую щель; 2. химический, основу ко­торого составляет диффузия медиатора АХ к постсинаптической мембране и образование на ней его комплекса с холинорецептором; 3. электрический, включащий увеличение ионной проницаемости постсинаптической мембраны, возникновение локального электри Рис.4.2. Схема элементов нервно мышечного синапса.

1 — миэлиновая оболочка аксона; 2 — концевые веточки аксона; 3 — пузырьки, содержащие ацетилхолин; 4 — митохондрия; 5 — пресинаптическая мембрана, покрывающая концевую веточку аксона в зоне нервномышечного синапса; 6 — синаптическая щель; 7 —постсинаптическая мембрана, покрывающая мышечное волокно в зоне нервномышечного синапса; 8 — ацетилхолинорецепторы на постсинаптической мембране; 9 — митохондрия мышечного волокна; 10 — ядро мышечной клетки; 11 — миофибрилла.

ческого потенциала (потенциала концевой пластинки; ПКП), разви­тие потенциала действия мышечного волокна.

Запасов АХ в нервном окончании достаточно для проведения лишь примерно 10 000 импульсов. При длительной же импульсации мо­тонейрона, несмотря на постоянный синтез АХ (см. главу 3), его содержание в концевых веточках может постепенно уменьшаться. В результате этого возможны нарушения передачи возбуждения в нерв­номышечных синапсах — пресинаптический нервномышечный блок.

Временно возникающий на постсинаптической мембране комплекс "АХ рецептор" после прохождения каждого импульса разрушается ферментом ацетилхолинэстеразой. Однако при длительной высоко­частотной импульсации мотонейрона (например при длительной и напряженной мышечной работе) АХ не успевает разрушаться и накапливается в синаптической щели. Способность постсинаптичес­кой мембраны к генерации ПКП при этом снижается и развивается частичный или полный постсинаптический нервно мышечный блок, приводящий либо к частичному, либо даже полному прекращению развития потенциалов действия на мембране мышечного волокна.

Механизмы сокращения мышечного волокна. В покоящихся мы­шечных волокнах при отсутствии импульсации мотонейрона по­перечные миозиновые мостики не прикреплены к актиновым миофиламентам. Тропомиозин расположен таким образом, что бло­кирует участки актина, способные взаимодействовать с попере­чными мостиками миозина. Тропонин тормозит миозин — АТФазную активность и поэтому АТФ не расщепляется. Мышечные волокна находятся в расслабленном состоянии.

При сокращении мышцы длина Адисков не меняется, Jдиски укорачиваются, а Нзона Адисков может исчезать (рис. 4.3.). Эти данные явились основой для создания теории, объясняющей сокра­щение мышцы механизмом скольжения (теорией скольжения) тон­ких актиновых миофиламентов вдоль толстых миозиновых. В ре­зультате этого миозиновые миофиламенты втягиваются между окру­жающими их актиновыми. Это приводит к укорочению каждого саркомера, а значит, и всего мышечного волокна.

Молекулярный механизм сокращения мышечного волокна состоит в том, что возникающий в области концевой пластинки потенциал действия распространяется по системе поперечных трубочек вглубь волокна, вызывает деполяризацию мембран цистерн саркоплазматического ретикулума и освобождение из них ионов кальция. Свобод­ные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Совокупность процессов, обуславливающих распространение потенциала действия вглубь мышечного волокна, выход ионов кальция их саркоплазматического ретикулума, взаимо­действие сократительных белков и укорочение мышечного волокна называют "электромеханическим сопряжением". Временная последо­вательность между возникновением потенциала действия мышечного волокна, поступлением ионов кальция к миофибриллам и развитием сокращения волокна показана на рисунке 4.4.





Рис.4.3. Сокращение мышцы.

А. Поперечные мостики между актином и миозином разомкнуты. Мышца находится в расслабленном состоянии.

Б. Замыкание поперечных мостиков между актином и миозином. Совершение головками мостиков гребковых движений по направлению к центру саркомера. Скольжение актиновых нитей вдоль миозиновых, укорочение саркомера, развитие тяги.

Рис.4.4. Схема временной последовательности развития потенциала действия (ПД), освобождения ионов кальция (Са2+) и развития изометрического сокращения мышцы.

При концентрации ионов Са2+ в межмиофибриллярном пространстве ниже 10" тропомиозин располагается таким образом, что блокирует прикрепление поперечных миозиновых мостиков к нитям актина. По­перечные мостики миозина не взаимодействуют с нитями актина. Продвижение относительно друг друга нитей актина и миозина отсут­ствует. Поэтому мышечное волокно находится в расслабленном состо­янии. При возбуждении волокна Са2+ выходит из цистерн саркоплазматического ретикулума и, следовательно, концентрация его вблизи миофибрилл возрастает. Под влиянием активирующих ионов Са2+ молекула тропонина изменяет свою форму таким образом, что вытал­кивает тропомиозин в желобок между двумя нитями актина, освобож­дая тем самым участки для прикрепления миозиновых поперечных мостиков к актину. В результате поперечные мостики прикрепляются к актиновым нитям. Поскольку головки миозина совершают "гребковые" движения в сторону центра саркомера происходит "втягивание" актиновых миофиламентов в промежутки между толстыми миозиновыми нитями и укорочение мышцы.

Источником энергии для сокращения мышечных волокон служит АТФ. С инактивацией тропонина ионами кальция активируются каталитические центры для расщепления АТФ на головках миозина. Фермент миозиновая АТФаза гидролизует АТФ, расположенный на головке миозина, что обеспечивает энергией поперечные мостики. Освобождающиеся при гидролизе АТФ молекула АДФ и неоргани­ческий фосфат используются для последующего ресинтеза АТФ. На миозиновом поперечном мостике образуется новая молекула АТФ. При этом происходит разъединение поперечного мостика с нитью актина. Повторное прикрепление и отсоединение мостиков продол­жается до тех пор, пока концентрация кальция внутри миофибрилл не снижается до подпороговой величины. Тогда мышечные волокна начинают расслабляться.

При однократном движении поперечных мостиков вдоль актино­вых нитей (гребковых движениях) саркомер укорачивается примерно на 1% его длины. Следовательно, для полного изотонического со­кращения мышцы необходимо совершить около 50 таких гребковых движений. Только ритмическое прикрепление и отсоединение голо­вок миозина может втянуть нити актина вдоль миозиновых и со­вершить требуемое укорочение целой мышцы. Напряжение, разви­ваемое мышечным волокном, зависит от числа одновременно зам­кнутых поперечных мостиков. Скорость развития напряжения или укорочения волокна определяется частотой замыкания поперечных мостиков, образуемых в единицу времени, то есть скоростью их прикрепления к актиновым миофиламентам. С увеличением скорос­ти укорочения мышцы число одновременно прикрепленных попере­чных мостиков в каждый момент времени уменьшается. Этим и можно объяснить уменьшение силы сокращения мышцы с увеличе­нием скорости ее укорочения.

При одиночном сокращении процесс укорочения мышечного во­локна заканчивается через 1550 мс, так как активирующие его ионы кальция возвращаются при помощи кальциевого насоса в цистерны саркоплазматического ретикулума. Происходит расслабле­ние мышцы.

Pages:     || 2 | 3 | 4 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.