WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 |

Влияние технологических и эксплуатационных факторов на долговечность стен и

покрытий, утепленных пенополистиролом

А.И. АНАНЬЕВ, доктор техн. наук, зав. лай. НИИСФ,

О.И. ЛОБОВ, доктор техн. наук. Председатель правления РОИС,

ВЛ. МОЖАЕВ, ген. директор ассоциации "Росстройматериалы",

П.А. ВЯЗОВЧЕНКО, директор Верхиеволжского института повышения квалификации (г.

Тверь) Роль наружных ограждающих конструкции в энергосбережении при эксплуатации зданий и сооружении следует рассматривать во взаимосвязи с долговечностью и уровнем их теплоизоляции. Необходимость комплексного подхода возросла с повышением требований к тепловой защите. Для большинства регионов страны новые нормы СНиПII379* "Строительная теплотехника можно выполнить только с применением эффективных утеплителей. Наибольшее распространение в сложившихся условиях получил пенополистирол. Этому способствуют меньшие энергозатраты на его производство, низкая теплопроводность и более высокое сопротивление воздухопроницаемости по сравнению с другими эффективными утеплителями.

Результаты обследований зданий и сооружений с наружными стенами и покрытиями, утепленными пенополистиролом, показывают, что этот теплоизоляционный материал имеет ряд физических и химических особенностей, которые не всегда учитываются проектировщиками, строителями и эксплуатационными службами. Большой проблемой является отсутствие необходимой информации в научнотехнической литературе о поведении пенополистирола в конструкциях и изменении его теплозащитных свойств во времени.

Стабильность теплофизических характеристик пенополистирола в условиях эксплуатации зависит от технологии его изготовления и совместимости с другими строительными материалами. Нельзя не учитывать и воздействия ряда случайных эксплуатационных факторов, ускоряющих естественный процесс деструкции пенополистирол. Это подтверждается совершенно различными сроками службы, устанавливаемыми отечественными специалистами в пределах от 13 до 80 лет на пенополистирол, чаще всего с одинаковыми физическими свойствами. Зарубежные специалисты устанавливают гарантированный срок службы 1520 лет. Реже даются гарантии до 30 лет. При этом не исключается возможность более длительной эксплуатации теплоизоляции при некотором ухудшении физических свойств.

Такое существенное различие по срокам связано с отсутствием единой официально утверждённой методики определения долговечности пенополистирольных плит.

Основным препятствием в её разработке является неординарное поведение пенополистирола в условиях эксплуатации. Это усложняет принятие критериев, которые необходимо использовать для моделирования физических воздействий при испытаниях. Они с достаточной степенью точности должны предсказывать частичную или полную деструкцию и снижение теплозащитных качеств пенополистирола в условиях эксплуатации. Большинством специалистов используется для этой цели критерий морозостойкости. Три цикла, а некоторые даже один цикл знакопеременного циклического воздействия приравнивают одному году эксплуатации здания. Замораживание выполняют при tн= 20 °С 40 °С, оттаивание или в воде tв = +20 °С или в паровоздушной среде tв= +60 °С. В последнем случае относительная влажность воздуха поддерживается равной Фв = 97%.

Испытания, базирующиеся на температурновлажностных циклических воздействиях, не в полной мере отражают все факторы, влияющие на старение пенополистирола в наружном ограждении. А процессы оттаивания образцов в воде при 20°С и паровоздушной среде при температуре 60°С не соответствуют влажностному и температурному режимам в условиях эксплуатации. Они не учитывают и различия в конструктивном решении стен и панелей, особенности температурновлажностного режима помещений и климатических воздействий. Поэтому результатами испытаний теплоизоляционных материалов на морозостойкость нельзя характеризовать долговечность наружных стен. Да и длительность процесса испытаний, составляющая 34 месяца, говорит не в пользу применения критерия морозостойкости для этих целей. При одинаковых теплотехнических и прочностных свойствах пенополистирола срок службы ограждающих конструкций и время наступления капитального восстановительного ремонта утеплителя могут существенно отличаться. В связи с этим долговечность наружного ограждения в отличие от утеплителя должна определяться расчетным методом. Очевидно, следует заменить термин "долговечность" теплоизоляционных материалов на термин "стойкость к эксплутационным воздействиям".



Конечно, объективная оценка стойкости пенополистирольных плит невозможна без сравнения с другими теплоизоляционными материалами. Поэтому и для минераловатных, пенополиуретановых, торфяных плит и ячеисто бетонных блоков должна быть разработана методика с учетом специфических свойств каждой группы родственных материалов. Только при сравнительном подходе каждый материал сможет занять свою нишу в обеспечении долговечности наружных ограждающих конструкций энергосберегающих зданий.

До введения новых норм по теплоизоляции стен и покрытий проблема разработки методики так остро не стояла изза малого объема производства и применения пенополистирола. Например, в трехслойных железобетонных панелях и стенах с гибкими металлическими связями было достаточным принимать толщину пенополистирольных плит 4 9 см в зданиях, возводимых практически по всей России от Краснодара до Якутска. И, как правило, в стенах ответственных сооружений, в капитальных жилых и общественных зданиях пенополистирол применялся в редких случаях. Согласно новым нормам, толщину пенополистирольного слоя в стенах и панелях с гибкими металлическими связями приходится увеличивать соответственно до 1530 см. При повышенной толщине утеплителей в стенах возрастают усадочные явления и температурные деформации, что приводит к образованию трещин, разрывам контактных зон с конструкционными материалами, изменяется воздухопроницаемость, паропроницаемость и, в конечном итоге, снижаются теплозащитные качества наружных ограждающих конструкций. В северных регионах страны с коротким холодным летом стены с увеличенной толщиной теплоизоляции не успевают войти в квазистационарное влажностное состояние, что приводит к систематическому накоплению влаги и ускоренному морозному разрушению, снижению срока службы и более частым капитальным ремонтам. Это подтверждает необходимость скорейшей разработки официально утвержденных методик для определения стойкости всех теплоизоляционных материалов к эксплуатационным воздействиям и методов расчета долговечности наружных ограждающих конструкций, и в первую очередь для пенополистирола.

Проведенные натурные исследования пенополистирольных плит в наружных стенах зданий и сооружений показали, что при отсутствии нарушений технологического регламента на заводе, при производстве и ремонте стен, панелей и покрытий, отобранные образцы по внешнему виду практически не отличаются от нового материала, несмотря на длительный срок эксплуатации (3040 лет). Установлено, что прочность образцов, отобранных из стен эксплуатируемых зданий, построенных до 1990 г., несколько ниже, чем образцов, взятых непосредственно с завода (рис.1).

При этом очень трудно оценить, как изменилась плотность побывавших в эксплуатации образцов в связи с отсутствием первичных данных, соответствующих времени ввода зданий в эксплуатацию. Необходимо отметить на рисунке интервал зависимости прочности от увеличения выше 40 кг/м3. В этой области отмечается меньшее снижение прочности от срока эксплуатации. Данные по теплопроводности () образцов беспрессового пенополистирола плотностью 3040 кг/м3, отобранных из панелей зданий с нормальным эксплуатационным режимом, показывают, что уже через 10 лет имеется тенденция к его увеличению. Через 30 лет эксплуатации значение при влажности 810% составляет 0,0470,050 Вт/(м °С), а после 40 лет повышается до 0,0530,055 Вт/(м °С). Сравнение экспериментальных данных с расчетными значениями действовавших СНиП ПА.762 и СНиП ПА.771 "Строительная теплотехника" показывает, что через 30 лет эксплуатационные значения теплопроводности почти не выходят за пределы требуемых значений =0,052 Вт/(м °С) с учетом повышающего коэффициента, равного 1,2. Необходимо пояснить, что в то время нормами устанавливалось расчетное значение, для у =35 кг/м3, равным 0,043 Вт/(м°С), вместе с тем в примечании № 2 к табл. 1 предлагалось проектировщикам его увеличивать на 20%. Этим коэффициентом учитывалось влияние усадки, уплотнения и других факторов на снижение теплозащитных качеств в процессе длительной эксплуатации.





Таблица № п/п Наименование газа Теплопроводность газа при t=25 oС (Вт/мoС) Воздух 0, Азот, N 0. Углекислый газ 0. Фреон11, ССL3 F 0. Фреон12, ССL2 F 0. В редакции СНиП по строительной теплотехнике 1982 г. коэффициент 1,2 был введен в расчетные табличные значения пенополистирола. И требуемое расчетное значение для условий эксплуатации Б стало составлять 0,05 Вт/(м °С) при = 40 кг/м3.

Превышение нормативного значения. пенополистирола наблюдается после 35 лет эксплуатации зданий. Поэтому, чтобы продлить до 50 лет безремонтный срок эксплуатации беспрессовых пенополистирольных плит, целесообразно расчетные значения коэффициентов теплопроводности дополнительно увеличить на 1520%. Но уплотнение и усадка не являются основными факторами снижения теплозащитных качеств наружных стен. Большее влияние оказывает уменьшение толщины теплоизоляционного слоя на 1525% в результате уплотнения пенополистирола. Так, например, увеличение коэффициента теплопроводности пенополистирола на 20% снизило термическое сопротивление теплоизоляционного слоя на 16% в панелях обследованных зданий. А происходящее при этом снижение толщины теплоизоляционного слоя на 20% дополнительно понизило термическое сопротивление на 25%.Поэтому, как правило, наружные стеновые панели, в которых в качестве утеплителя применялся беспрессовый пенополистирол плотностью 2040 кг/м ("мягкий"), в результате уплотнения при изготовлении с применением вибрирования и усадки в эксплуатации имеют теплозащитные качества на 2530% ниже проектных значений.

Изменения могли быть вызваны и другими причинами. Нарушением регламента тепловой обработки трехслойных панелей на ДСК, приводящим к ускорению естественной деструкции пенополистирола. Нельзя исключить и влияние вида порофора, применяемого для вспенивания полистирола, газов, образующихся при этом, с низким или вводимых непосредственно в вязкую жидкую массу (табл.1 п.

25).

Газ со временем улетучивается и освобожденный объем восполняется воздухом, что приводит к повышению теплопроводности пенополистирола. Поэтому до испытаний необходимо удалить газы, что приведет образцы в равные условия.

Зафиксированы случаи, когда значения коэффициентов теплопроводности беспрессового пенополистирола за 710 лет эксплуатации конструкции возросли в 23 раза. Это происходило, когда между гранулами в плитах полностью отсутствовало сцепление в результате нарушения технологического регламента на заводе или применения несовместимых с пенополистиролом материалов при производстве строительных работ. Существенную роль могли оказать используемые для ремонта краски, содержащие летучие углеводородные соединения.

Если учесть весь комплекс воздействий, включая случайные эксплутационные и технологические факторы, то можно сделать вывод об отсутствии корреляционной зависимости между теплопроводностью плит, теплозащитными качествами панелей и сроком их эксплуатации. Поэтому в лабораторных условиях сначала изучалось влияние систематически действующих физических факторов, т.е. отрицательных температур и влажности на изменение водопоглошательной способности, сорбционных свойств и теплопроводности пенополистирольных плит. На втором этапе изучалось влияние химических реагентов и случайных строительных факторов на процесс деструкции пенополистирола. Исследования проводились на образцах не нополистирола, изготовленных беспрессовым, прессовым способами и методом экструзии во стандартным методикам.

Образцы беспрессового пенополистирола плотностью 17 кг/м после 110 циклов замораживания и оттаивания в воде имеют водопоглощение 350 % по массе, а прессового 0 = 72 кг/м3 и экструдированного 0 = 35 кг/м3 соответственно 20 и 25% (рис.2). Возникла необходимость установить, является ли замораживание основной причиной увеличения водопоглощательной способности образцов пенополистирола. В результате установлено, что образцы бес прессового пенополистирола после выдерживания в воде в течение двух суток увлажнились до 18,2%, через 40 дней влажность повысилась до 257.6%.

Pages:     || 2 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.