WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 10 |

Маркетинг, решение исследовательских задач

Алифанов А.Л., Алифанов Л.А. Маркетинг: Решение исследовательских задач: Учеб.

Пособие. Красноярск, ИПЦ КГТУ, 2005. 95 с.

ОГЛАВЛЕНИЕ Введение Проверка статистических гипотез 1.1. Предпосылки использования в маркетинговых исследованиях статистических методов 1.2. Оценка существенности факторов, влияющих на объем производства товара, с помощью непараметрического критерия знаков 1.3. Оценка значимости систематически действующих факторов на результат деятельности фирм с использованием критерия для количества серий 1.4. Анализ компьютерного рынка с позиций однородности объемов продаж лидирующими компаниями 1.5. Вычисление количественной оценки статистической связи между качественными показателями деятельности фирм 1.6. Оценивание резко выделяющихся показателей динамики реального денежного дохода населения 1.7. Проверка однородности выручки, получаемой от российского экспорта основных видов продукции 1.8. Оценка однородности условий маркетинговой деятельности Анализ факторов, обуславливающих успех управления маркетингом 2.1. Оценка значимости местонахождения пункта продаж на средние цены автомобилей 2.2. Влияние квалификации специалистов на продолжительность технического обслуживания машин 2.3. Оценка существенности влияния двух факторов и их взаимодействия на показатели маркетинга Непараметрические методы исследования в маркетинге 3.1. Экспертные методы оценивания качества товаров и услуг 3.2. Оценивание существенности влияния рейтинга марки товара на прибыль фирм Управление запасами 4.1. Термины, постановка задачи 4.2. Расчет оптимального размера партии при равномерном спросе 4.3. Расчет оптимального размера партии в случае модели производственных поставок Модели массового обслуживания 5.1. Термины, определения 5.2. Вычисление показателей простейшей очереди Заключение Библиографический список Приложение ВВЕДЕНИЕ Маркетинг как вид человеческой деятельности, направленной на удовлетворение нужд и потребностей посредством обмена [7], подвержен влиянию огромного количества факторов демографического, экономического, природного, научнотехнического, политического, культурного характера. Они проявляют себя в случайные моменты времени, в различных сочетаниях, с разной степенью воздействия на эффективность маркетинговой деятельности.

Стратегическое планирование, разработка годовых планов и маркетинговый контроль невозможны без знания рыночной ситуации и формирующих ее факторов макро и микросреды. Поэтому необходимо выявление наиболее значимых их них с целью построения оптимизационных моделей и написания сценариев, позволяющих осуществлять последовательное и глубокое внедрение на рынки.

Маркетинговая ситуация быстро меняется, уровень значимости факторов, существенных в настоящий момент, через относительно малый промежуток времени может повыситься или снизиться; с развитием рынка на первое место могут выходить качественно новые факторы, коренным образом изменяя условия производства, сбыта и потребления.

В настоящем пособии изложены наиболее простые и эффективные способы, лежащие в основе формирования статистических банков – совокупностей «современных методик статистической обработки информации, позволяющих наиболее полно вскрыть взаимозависимости в рамках подборки данных и установить степень их статистической надежности» [7], а также банков моделей.

Как статистические банки, так и банки оптимизационных и прогнозных моделей требуют постоянного поддержания уровня их надежности за счет совершенствования самих методик и моделей. Изложенные в пособии методики и модели представляют собой фундаментальные знания, на основе которых осуществляется повышение уровня их эффективности.

В первой главе рассмотрены методы и примеры решения задач проверки статистических гипотез при исследовании различных аспектов маркетинговой деятельности с помощью критериев математической статистики. Приведены способы оценивания существенности факторов, влияющих на показатели маркетинга, и значимости систематически действующих факторов на результаты работы фирм.

Представлены методы проверки однородности объемов продаж ведущими компаниями, оценки статистической связи между показателями функционирования организаций и резко выделяющихся показателей реального денежного дохода населения. Произведен анализ однородности выручки, получаемой от российского экспорта основных видов продукции, и однородности условий маркетинговой деятельности.

Вторая глава посвящена анализу факторов, обуславливающих эффективность маркетинговой деятельности. Здесь приведены методика и решение задачи с помощью однофакторного дисперсионного анализа: оценка значимости влияния местонахождения пункта продаж на цены автомобилей, а также методика и решение задач с помощью двухфакторного дисперсионного анализа: оценка существенности влияния двух факторов и их взаимодействия на показатели маркетинга.

В третьей главе на примерах проиллюстрированы приемы применения непараметрических методов исследования в маркетинге для количественного оценивания качественных состояний или свойств объектов. Рассмотрены примеры выявления уровня надежности автомобильных узлов, а также уровни эффективности использования различных видов транспорта крупными отправителями. Изложены элементы кластерного анализа в свете оценивания существенности влияния рейтинга марки товара на прибыль фирм.

В четвертой главе изложен один из важнейших аспектов маркетинга – управление запасами. Приведены описание задач теории и способы определения оптимальных размеров партий товара для двух вариантов: в случае равномерного спроса и в случае модели производственных поставок.

В пятой главе рассмотрены понятия теории массового обслуживания и на примерах показаны варианты использования простейших моделей для вычисления основных показателей систем, находящих применение в различных сферах маркетинговой деятельности.

Изложение приведенных в данном пособии методик ориентировано на выполнение расчетов вручную. На практике более удобно осуществлять исследования в специализированных пакетах программ, либо программировать вычислительные алгоритмы самостоятельно, однако, в процессе обучения «ручной» счет предпочтительнее, так как помогает лучше усвоить материал и закрепить его понимание на интуитивном уровне.

1. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ 1.1. Предпосылки использования в маркетинговых исследованиях статистических методов При исследованиях показателей маркетинговой деятельности в реальных условиях во многих случаях приходится иметь дело с практически трудно управляемыми или вовсе не управляемыми, трудно изменяемыми или даже не изменяемыми исследователем факторами. Это весьма затрудняет или вовсе исключает целенаправленное варьирование их уровнями по заранее разработанному применительно к конкретной ситуации или выбранному плану, и воплощение его (даже если это принципиально возможно) может оказаться слишком дорогостоящим.

Тем не менее, если хотя бы один фактор управляем, а остальные сравнительно легко контролируемы, проводят эксперименты в разнородных условиях, сообразуясь с целью исследования и материальными возможностями.

Когда эксперименты проводятся с факторами, часть которых управляема, а другая часть неуправляема, но контролируема, то они называются активнопассивными, если же все факторы управляемы и контролируемы – активными. Активные эксперименты предполагают отбор существенных факторов, задание границ факторного пространства, минимизацию числа опытов, построение модели, адекватной данным, и отыскание оптимума. Но уже только одно ограничение факторного пространства само по себе сильно сужает поиск и процесс формирования новых знаний, поэтому такой подход к экспериментированию в большинстве случаев, скорее, позволяет уточнить знания об объекте и упорядочить их, т. е. по сути активные эксперименты эффективны лишь на горизонтальном уровне.

Главным способом изучения маркетинговых ситуаций является наблюдение – «восприятие объекта без активного вмешательства в его поведение», хотя и «исследователь вынужден пассивно ожидать естественного проявления необходимых эффектов в поведении объекта, что значительно удлиняет ожидаемое время сбора необходимой информации» [2]. Наблюдение особенно эффективно, когда факторы трудно управляемы или неуправляемы, но контролируемы. Современные методики обработки наблюдений позволяют получать приемлемые результаты, делать достаточно точные выводы, выдвигая гипотезы и принимая или отвергая их.

Статистическая гипотеза – любое предположение о свойствах случайной величины.

Выдвигаемые гипотезы подразделяются на исходную (основную), так называемую, нульгипотезу Н0, и конкурирующие гипотезы Н1, Н2, …Нn. Если нулевая гипотеза отвергается, то в качестве основной принимается первая из конкурирующих, если и она отвергается, то принимается вторая и т. д.

При проверке статистических гипотез используется понятие уровня значимости a.

Уровень значимости (или риск производителя – в терминологии науки о контроле качества) есть вероятность ошибки первого рода – отвергнуть правильную гипотезу. Вероятность противоположного события Рдов = 1 – a.   (1.1) Вероятность ошибки второго рода – принять неправильную гипотезу (риск потребителя) в, вероятность противоположного события 1 – в – мощность критерия.

В инженерных экономических и технических расчетах уровень значимости принимают равным 0,05 или 0,1, поскольку эти значения соответствует, как правило, принятой точности измерений и объему выборок.

Можно уменьшить a – риск производителя, но тогда, вполне естественно, увеличится риск потребителя в, поэтому для уменьшения a и в необходимо увеличивать объем выборок, или увеличивать точность измерений, или увеличивать и то и другое.

Для проверки нульгипотезы наблюдаемое значение случайной величины сравнивают с критерием, который также является случайной величиной с известной функцией распределения. Найденные значения критерия могут находиться в критической области маловероятных значений и, напротив, в области принятия гипотез, где значения критерия допускаются с заданной доверительной вероятностью. Точки, отделяющие критическую область от области принятия гипотез, называют критическими. Правосторонняя критическая область определяется неравенством   К > Ккр,(1.2) где К – случайная величина критерия; Ккр – значение критерия, соответствующее критической точке.

Левосторонняя критическая область имеет место, когда   К < Ккр.(1.3) Двусторонняя критическая область отвечает неравенству |К| > Ккр.(1.4) Например, для нахождения правосторонней критической области задаются уровнем значимости б и определяют по соответствующим таблицам критическую точку Ккр, руководствуясь следующим соображением: при условии справедливости нулевой гипотезы вероятность того, что К > Ккр, равна a:

  Р(К > Ккр) = a. (1.5) Значит, если К находится в критической области, то нульгипотеза отвергается, а вероятность того, что К > Ккр, равна a – вероятности отвергнуть правильную гипотезу.

Двусторонняя критическая область, отвечающая требованиям |К| > Ккр или К < К1кр и К > К2кр при К2кр > К1кр, определяется как сумма:

  Р(К < К1кр) + Р(К > К2кр) = a.  (1.6) При симметричном распределении критерия имеет место выражение   Р(К > Ккр) = a/2,   (1.7) т. е. вероятность того, что найденный критерий попадает в правостороннюю критическую область, равна a/2 (при такой же вероятности попадания в левостороннюю критическую область, что в сумме дает a).

1.2. Оценка существенности факторов, влияющих на объем производства товара, с помощью непараметрического критерия знаков Критерий знаков является одним из самых простых способов выявления существенных факторов. Он основан на Nстатистике и служит для проверки гипотезы о равной вероятности положительного и отрицательного исходов для последовательности независимых событий. Результаты наблюдений (испытаний) независимы, если каждый из них не подвержен влиянию предыдущего и не содержит информации о последующем.

Если гипотеза о равной вероятности исходов независимых испытаний (их число равно n) Р{+} = Р{–} не отвергается, то нужно предположить, что исследуемый фактор, варьируемый экспериментатором, не оказывает влияния на результат испытаний. Единственное условие – отсутствие влияния других значимых факторов, кроме исследуемого.

Если количество положительных исходов равно м, то для проверки гипотезы Н0: р = 0,5 (при конкурирующих Н1: р < 0,5;

Н2: р > 0,5; Н3: р ? 0,5) по табл. 1 приложения определяют критические значения N(a, м) и N(a, n – м), соответствующие заданному уровню значимости.

1.    При альтернативе {р < 0,5} основная гипотеза отвергается с уровнем значимости a, если n ? N(a, м).

2.    При альтернативе {р > 0,5} основная гипотеза р = 0,5 отвергается с уровнем значимости a, если n ? N(a, n – м).

Pages:     || 2 | 3 | 4 | 5 |   ...   | 10 |




© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.