WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 |

Шахова Л. Некоторые аспекты исследований структурообразования ячеистых бетонов неавтоклавного твердения

// Строительные материалы. 2003. №2 [приложение]. C. 47

Появление пенобетонов связано с развитием органической химии. Принцип их получения основан на введении в цементное тесто пенообразователей, являющихся в основном продуктами органического происхождения. Первый патент на получение пенобетона относится к 1925 г. и принадлежит Байеру [1]. В настоящее время пенобетоны переживают третье возрождение. Новое поколение исследований по пенобетону принадлежит школам под руководством профессоров Г.П. Сахарова (Москва), У.М. Махамбетовой (Казахстан), Л.Б. Сватовской (СанктПетербург), М.С. Гаркави (Магнитогорск), А.С. Коломацкого (Белгород) и др. Неавтоклавный бетон активно внедряется как конструкционнотеплоизоляционный и теплоизоляционный материал, имеющий ряд достоинств. За счет простой технологии его производство осуществляется как в стационарных условиях, так и на мобильных минизаводах. Но при видимой простоте технологии процесс формирования макроструктуры ячеистого бетона трудно поддается управлению и регулированию. Это связано с необходимостью контролирования большого числа технологических параметров: качества и количества сырьевых компонентов, водотвердого отношения, температуры и рН среды, изменяющихся в процессе изготовления и твердения изделий. Поэтому реальные условия структурообразования пенобетонов часто отклоняются от оптимальных, что приводит к возникновению дефектов в структуре.

Главный недостаток публикаций, посвященных изучению свойств пенобетонов, а также описанию разработанных технологий, состоит, по нашему мнению, в том, что они базируются на представлении о ячеистой структуре пеномассы как механической смеси пены со строительным раствором без учета минералогического и вещественного состава цемента, взаимодействия компонентов раствора с пузырьками воздуха и молекулами пенообразователя.

Считается, что пена должна выполнять роль несущего каркаса, в котором твердые частицы раствора удерживаются во взвешенном состоянии силами вязкого трения. По нашим наблюдениям при неправильном выборе пенообразователя и типа вяжущего, а также способов получения пены и ее смешивания с твердыми компонентами пена часто разрушается до момента схватывания вяжущего, пеноцементная масса дает усадку, по высоте свежеуложенного массива образуются сплошные каналы слияния пузырьков. В результате нарушается структура пенобетона, возрастает плотность и неравномерность теплофизических свойств по высоте изделия. Таким образом, технологию изготовления пенобетона можно отнести к тонким критическим технологиям, закономерности которых резко отличаются от закономерностей технологии тяжелых бетонов.

Усовершенствование технологии пенобетона и оптимизация его строительнотехнических свойств возможны только при глубоком понимании физикохимических процессов, протекающих в объеме пеноцементной системы на границах раздела фаз как на макро так и на микроуровне, с первых минут ее получения. Поэтому вначале необходимо правильно идентифицировать пеноцементную массу и пенобетон как объект для исследований. В данной статье приводится попытка изложения теоретических представлений о природе, закономерностях и механизме основных процессов, происходящих в трехфазной полиминеральной полидисперсной пеноцементной системе, и общих факторах, определяющих скорость этих процессов, а следовательно устойчивость системы.

Пеноцементную массу в первом приближении можно отнести к лиофобным грубодисперсным высококонцентрированным системам, поэтому процессы, протекающие в ней, описываются законами коллоидной химии [2]. Центральной проблемой таких систем является агрегативно неустойчивость. Коллоидная химия объясняет агрегативную неустойчивость дисперсных систем достаточно большой и всегда положительной свободной поверхностной энергией, сосредоточенной на межфазных поверхностях системы. Этот избыток поверхностной энергии обусловливает протекание в системе различных процессов, ведущих к уменьшению дисперсности и в конечном итоге к разрушению дисперсной системы. Скорость протекания этих процессов и устойчивость определяются природой, фазовым состоянием и составом дисперсионной среды, а также дисперсностью и концентрацией дисперсной фазы. Устойчивость лиофобных дисперсных систем может меняться в широких пределах от практически полной неустойчивости до практически полной устойчивости.



До момента затвердевания пеноцементная смесь является гетерогенной свободнодисперсной системой, включающей твердую, жидкую и газообразную фазы, в которых дисперсная фаза подвижна. Причем можно выделить две дисперсные подвижные фазы: дисперсную газовую фазу в дисперсионной среде в виде высококонцентрированного минерального раствора и дисперсную твердую фазу в водном растворе в виде дисперсионной среды. Частицы в данной системе сближены принудительно, поэтому данную систему можно условно отнести к свободнодисперсной концентрированной системе. Со временем она переходит в связнодисперсную систему с твердой дисперсной средой — цементным камнем.

Управление агрегативной устойчивостью пеноцементных систем необходимо для оптимизации строительнотехнических свойств пенобетонов. Эффективность технологических процессов получения, переработки и применения любых дисперсных систем в значительной степени определяется поверхностными явлениями. В связи с бурным развитием производства ячеистых бетонов неавтоклавного твердения все более важное и самостоятельное значение, как в научном, так и в прикладном отношении приобретают трехфазные высоконцентрированные пеноцементные системы, которые имеют свои особенности.

Рассмотрим подробнее пеноцементную систему до затвердевания. Три основные фазы пеноцементной смеси образуют поверхности раздела: жидкость — газ, жидкость — твердое и твердое — газ. Каждая из поверхностей раздела характеризуется своим значением свободной поверхностной энергии, появление которой обусловлено неодинаковым притяжением молекул поверхностного слоя со стороны соприкасающихся фаз, при этом поверхностная энергия локализована в тонком поверхностном слое, толщина которого ненамного превышает размеры двухтрех молекул. Частицы фаз разделены тонкими прослойками дисперсионной среды. Как все неравновесные системы, такая система будет стремиться к равновесному состоянию с минимальной межфазной поверхностью. Для стабилизации дисперсных трехфазных систем необходимо обязательное применение поверхностноактивных веществ, которые адсорбируются на поверхности воздух — вода, изменяют поверхностную энергию и стабилизируют воздушную дисперсию (пену).

Коллоидная химия выделяет три процесса разрушения дисперсных систем, сопровождающиеся уменьшением свободной поверхностной энергии межфазных границ: изотермический перегон вещества от малых частиц к более крупным, коалесценция (слияние частиц) и коагуляция (агрегирование частиц при их слипании) [2].

Трудность определения причин неравновесного состояния пеноцементной системы состоит в том, что необходимо рассматривать процессы, одновременно протекающие на границах раздела трех фаз. Кроме того, на физические процессы между частицами накладываются процессы химического взаимодействия между водой и клинкерными минералами цемента, хемосорбционные процессы взаимодействия между молекулами ПАВ и продуктами гидратации. Объяснение агрегативной устойчивости или неустойчивости можно дополнить с позиций химической кинетики, которая рассматривает взаимодействие сил отталкивания и притяжения между частицами, а также химические реакции, которые могут протекать на границе фаз. Необходимо учитывать, что получение пеноцементной массы идет в динамических условиях, т. е. необходимо достичь основной и непосредственной цели смешивания и структурообразования системы — однородности распределения фаз и устойчивости во времени.

Для понимания сущности протекания многофакторных процессов в сложных пенных и пеноминеральных системах нами предлагается разложить функциональные зависимости на отдельные составляющие (элементарные акты). Кроме того, для разработки закономерностей управления процессами структурообразования пеноцементной системы необходимо провести анализ аналогий и различий разбавленных коллоидов и свойств высококонцентрированных трехфазных систем.

Из многих факторов, влияющих на свойства пенобетонов, особую роль играет природа вводимых пен. При производстве пенобетонных изделий производители сталкиваются с проблемой правильного выбора вида пенообразователя. Существует огромное разнообразие пенообразователей, предлагаемых для различных отраслей промышленности, но до настоящего времени остается проблема создания дешевого синтетического пенообразователя для получения пенобетонов со стабильными свойствами [3]. При этом подбираемые ПАВ в составе пенообразователей для пенобетонов должны обеспечивать оптимальные технологические параметры и строительнотехнические свойства поризованных изделий. Свойства пенообразователей должны определяться, исходя из логических соображений: при минимальном расходе пенообразователи должны стабилизировать нужное количество воздушной дисперсной однородной мелкоячеистой фазы и устойчивость пены в течение длительного времени в высокоминерализованной растворной смеси, изменяющей свои физикомеханические параметры в процессе приготовления, схватывания и твердения цементного раствора.





В вопросе о механизме стабилизирующего действия ПАВ на пеноцементную систему до настоящего времени нет единой точки зрения, также нет методик оценки пенообразующей способности ПАВ в пеноцементных системах, что затрудняет исследования.

Все ПАВ по характеру адсорбции на границе и механизму стабилизации дисперсных систем делятся на низкомолекулярные и высокомолекулярные, а по природе происхождения на синтетические и природные, отличительные свойства этих ПАВ приведены в работе [4].

Значение поверхностного натяжения для разных пенообразователей, применяемых в технологии пенобетона, различно. Синтетические пенообразователи снижают значение поверхностного натяжения воды в два раза, тогда как пенообразователи Неопор и Унипор на основе пептизированных белков всего на 10—15%. Но при высокой пенообразующей способности синтетические пенообразователи не могут давать пены с высокой устойчивостью. Неравновесность адсорбционных слоев ПАВ на поверхности пузырька воздуха оказывает значительное влияние на процесс формирования ячеистой структуры. Поэтому в технологиях, основанных на применении синтетических пенообразователей, особое значение имеет устойчивость как пенной, так и пеноцементной массы.

Различают несколько факторов устойчивости (стабилизации) дисперсных систем [2]. Первый фактор стабилизации носит название «эффект Марангони Гиббса» и связан он с эффективной упругостью пленок с адсорбционными слоями ПАВ. При быстром и особенно локальном деформировании пленки нарушается и равновесное распределение вещества по поверхности пленки, что приводит к повышению модуля эффективной упругости. В этом случае существенная роль принадлежит поверхностной миграции молекул ПАВ из области с высокой адсорбцией (недеформированная часть пленки) в область с пониженным значением адсорбции (деформированная часть) или же из объемной части пленки.

Этот фактор играет большую роль в повышении устойчивости системы с низкомолекулярными ПАВ, скорость адсорбции молекул которых из внутренней (объемной) части пленки высокая за счет малого размера молекул и отсутствия в адсорбированном слое ассоциативных групп, препятствующих диффузии. В практических условиях, чтобы повысить устойчивость такой системы необходимо применить длительные динамические воздействия, при этом увеличивается однородность смеси за счет равномерного распределения молекул ПАВ как на границе раздела фаз, так и в объеме толстых пленок.

Второй фактор устойчивости систем описывается теорией ДЛФО (Б.В. Дерягана, Л.Д. Ландау, Е. Фервея и Дж. Обербека). Основная идея теории ДЛФО состоит в учете двух противоборствующих сил: электростатического отталкивания и молекулярного притяжения. Эти силы характеризуют расклинивающее давление тонких плоских пленок. Давление определяется как разность между давлением во внешней среде и давлением, ограничивающим тонкий слой поверхности, и зависит от ионноэлектростатического взаимодействия двухсторонней симметричной пленки. В пеноцементной системе давление и общая сила, сжимающая поверхности двойной пленки, могут иметь различную природу и зависеть от характера граничных условий и системы отклонения от равновесности.

В двухфазных системах устойчивость определяется свойствами пенных пленок.

Pages:     || 2 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.