WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     || 2 | 3 | 4 | 5 |   ...   | 7 |

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ

РАДИОТЕХНИКИ ЭЛЕКТРОНИКИ И АВТОМАТИКИ

(технический университет)

Реферат по материаловедению

на тему:

Цветные металлы в конструкциях РЭС Студента 2го курса Преподаватель:

Факта РТС Ахмадьярова Д.И.

Группы РК102 Федотов П.А.

ПЛАН:

1.Алюминий и его сплавы стр 3 – 6 2. Медь и его сплавы стр 6 12 3. Титан и его сплавы стр 12 – 18 4. Магний и его сплавы стр 18 – 5. Олово и его сплавы стр 23 – 6. Благородные металлы и металлы платиновой группы стр 7. Список используемой литературы стр Цветные металлы:

Основная группа материалов, которая применяется в РЭС. Области применения: цветные металлы используют :

как конструкционные металлы при изготовлении каркасов микро и макро сборок, панелей кожуха прибора, рам, стоек, крипежа, заклёпок, оснований печных плат, обычных и герметичных корпусов микросборок и т.д. При этом исп.свва как: короз. Стойкость, лёгкость обработки, немагн. свва.

как радиотехнический материал с хорошими проводимыми свойствами. При этом из них изготавливают: эл. провода, фальгу для печных плат, электрические экраны, отражатели зеркальных антенн, элты ант. устройств, элты волноводных трактов: волноводные каналы, фланцы, элементы разъёмов, пружинные контакты и т.д. и т.п.

как вспомогательный мет. материал. Применяется при пайке, при сварке.

Как технологический материал для мет покрытий с целью коррозионной и механической защиты конструкций. А также повышение износостойкости, проводимости АЛЮМИНИЙ И ЕГО СПЛАВЫ Алюминий самый распространенный металл в земной коре. Его содержание оценивают в 7.45 % (больше, чем железа, которого только 4.2 %). Алюми­ний как элемент открыт недавно в 1825 г., когда были получены первые небольшие комочки этого металла. Начало его промышленного освоения от­носится к концу прошлого столетия. Толчком к этому послужила разрабо­тка в 1886 г. способа его получения путем электролиза глинозема, раст­воренного в криолите. Принцип способа лежит в основе современного про­мышленного извлечения алюминия из глинозема во всех странах мира.

По внешнему виду алюминий представляет собой блестящий серебристый белый металл. На воздухе он быстро окисляется, покрываясь тонкой белой матовой пленкой Al O. Эта пленка обладает высокими защитными свойст­вами, поэтому, будучи покрытым такой пленкой, алюминий является корро­зионностойким.

Алюминий достаточно легко разрушается растворами едких щелочей, со­ляной и серной кислот. В концетрированной азотной кислоте и органичес­ких кислотах он обладает высокой стойкостью.

Наиболее характерными физическими свойствами алюминия является его малая относительная плотность, равная 2.7, а также сравнительно высо­кие тепло и электропроводность. При 0 C удельная электропроводность алюминия, т.е. электропроводность алюминиевой проволоки сечением 1 мм и длиной 1 м равна 37 1 Ом.

Коррозионная стойкость и особенно электропроводность алюминия тем выше, чем он чище, чем меньше в нем примесей.

Температура плавления алюминия невысокая, она равна приблизительно 660 C. Однако скрытая теплота плавления его очень большая около 100 кал г, поэтому для расплавления алюминия требуется большой расход теп­ла, чем для расплавления такого же количества, например, тугоплавкой меди, у которой температура плавления 1083 C, скрытая теплота плавле­ния 43 кал г.

Для механических свойств алюминия характерна большая пластичность и малая прочность. Прокатанный и отожженный алюминий имеет =10 кГ мм, а твердость НВ25, =80% и =35%.

Кристаллическая решетка алюминия представляет собой гранецентриро­ванный куб, имеющий при 20 C параметр (размер стороны) 4.04. Алло­тропических превращений алюминий не имеет.

Чистота алюминия является решающим показателем, влияющим на все его свойства, поэтому химический состав положен в основу классификации алюминия.

Неизбежными примесями, получающимися при производстве алюминия, являются железо и кремний. Обе они в алюминии вредны. Железо не раст­воряется в алюминии, а образует с ним хрупкие химические соединения FeAl и Fe Al. С кремнием алюминий образует эвтектическую механичес­кую смесь при 11.7% Si. Поскольку растворимость кремния при комнатной температуре очень мала (0.05%), то даже при его незначительном коли­честве он образует эвтетику Fe+Si и включения очень твердых (НВ 800) хрупких кристалликов кремния, которые снижают пластичность алюминия. При совместном присутствии кремния и железа образуется тройное хими­ческое соединение и тройная эвтектика, тоже понижающие пластичность.



Чистота алюминия разных марок.

Группа чистоты Марка Содержание алюминия, % не менее | Группа | чистоты | Марка Содержание алюминия, % не менее Особой чистоты А 99. | | Техни | ческой | чистоты | | | | А А А А А А А АЕ 99. 99. 99. 99. 99. 99. 99. 99. Высокой чистоты А А А А 99. 99. 99. 99. Алюминий всех марок содержит более 99 % Al. Количественное же пре­вышение этой величины в сотых или десятых долях процента указывают в названии марки после начальной буквы А. Так, в марке А85 содержится 99.85 % Al. Исключение из этого принципа маркировки составляют марки А,АЕ, в которых содержание алюминия такое же, как в марках А0 и А5, но другое соотношение входящих в состав примесей железа и кремния.

Буква Е в марке АЕ означает, что алюминий данной марки предназнача­ется для производства электропроводов. Дополнительным требованием к свойствам алюминия является низкое электросопротивление, которое для проволоки, изготовленной из него, должно быть не более 0.0280 ом мм м при 20 C.

Алюминий применяют для производства из него изделий и сплавов на его основе, свойства которых требуют большой степени его чистоты.

В зависимости от назначения алюминий можно производить в различном виде. Алюминий всех марок (высокой и технической чистоты), предназна­ченный для переплавки, отливают в виде чушек массой 5; 15 и 1000 кг. Их предельные величины следущие: высота от 60 до 600 мм, ширина от 93 до 800 мм и длина от 415 до 1000 мм.

Применение алюминия обусловлено особенностью его свойств. Сочетание легкости с достаточно высокой электропроводностью позволяет применять алюминий как проводник электрического тока, заменяя им более дорогую медь.

Широко его применяют также в пищевой промышленностииз него изготов­ляют разнообразную посуду для приготовления пищи. При этом используют не только его стойкость к действию органических кислот, но также и вы­сокую теплопроводность.

Высокая пластичность позволяет раскатывать алюминий в фольгу, кото­рая в настоящее время полностью заменила применявшуюся ранее более до­рогую оловянную фольгу. Фольга служит упаковкой для самых разнообраз­ных пищевых продуктов: чая, шоколада, табака, сыра и др.

Алюминий применяют так же, как антикоррозионное покрытие других ме­таллов и сплавов. Его можно наносить плакированием, диффузионной мета­ллизацией и другими способами, включая покраску алюминийсодержащими красками и лаками. Особенно сильно распространено плакирование алюми­нием плоского проката из менее коррозионноустойчивых алюминиевых спла­вов.

Химическую активность алюминия по отношению к кислороду используют для раскисления при производстве полуспокойной и спокойной стали и для получения трудновосстановимых металлов путем вытеснения алюминием из их кислородных соединений.

Алюминий применяют как легирующий элемент в самых различных сталях и сплавах. Он придает им специфические свойства. Так например, он повы­шает жаростойкость сплавов на основе железа, меди, титана и некоторых других металлов.

Можно назвать и иные области применения алюминия различной степени чистоты, но самое большое его количество расходуют на получение раз­личных легких сплавов на его основе. Сведения о главных из них приве­дены ниже.

В целом применение алюминия в различных отраслях хозяйства на приме­ре развитых капстран оценивают следущими цифрами: транспортное машино­строение 2023% (в том числе автомобилестроение 15%), строительство 1718%, электротехника 1012%, производство упаковочных материалов 910%, производство потребительских товаров длительного пользования 910%, общее машиностроение 810%.

Алюминий завоевывает все новые области применения, несмотря на кон­куренцию других материалов и особенно пластмасс.

Прочность алюминия незначительна, поэтому для изготовления любых из­делий,предназначенных к восприятию внешних сил, применяют не чистый алюминий, а его сплавы, которых в настоящее время разработано достато­чно много марок.





Алюминиевые сплавы по способу изготовления из них изделий делят на две группы: деформируемые и литейные. Такое деление отражает основные технологические свойства сплавов: деформируемые имеют высокую пластич­ность в нагретом состоянии, а литейные хорошую жидкотекучесть, имеет сравнительно не большую усадку и предназначены в основном для фасонного литья. Эти сплавы маркируются буквами "АЛ" с последующим порядковым номером: АЛ2, АЛ9, АЛ13, АЛ22, АЛЗО.

Для по­лучения этих свойств в алюминий вводят разные легирующие элементы и в неодинаковом количестве.

Сырьем для получения сплавов обоего типа являются не только техниче­ски чистый алюминий, о котором речь шла выше, но также и двойные спла­вы алюминия с кремнием, которые содержат 1013 % Si, и несколько отли­чаются друг от друга количеством примесей железа, кальция, титана и марганца. Общей содержание примесей в них 0.51.7 %. Эти сплавы назы­вают силуминами и маркируют у нас в стране СИЛ00 (наиболее чистый по примесей), СИЛ0, СИЛ1 и СИЛ2. Поставляют их в виде гладких чушек или чушек с пережимами массой 6 и 14 кг. Силумин в чушках тоже явля­ется товаром на мировом рынке.

Деформируемые алюминиевые сплавы хорошо обрабатываются прокаткой, ковкой, штамповкой. Их марки приведены в ГОСТ478474. К деформируемым алюминиевым сплавам не упрочняемым термообработкой, относятся сплавы системы AlMn и ALMg:Aмц; АмцС; Амг1; АМг4,5; Амг6. Аббревиатура включает в себя начальные буквы, входящие в состав сплава компонентов и цифры, указывающие содержание легирующего элемента в процентах. К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы AlCuMg с добавками некоторых элементов (дуралюны, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного хим.состава.

Для получения деформируемых сплавов в алюминий вводят в основном ра­створимые в нем легирующие элементы в количестве, не превышающем пре­дел их растворимости при высокой температуре. В них не должно эвтекти­ки, которая легкоплавка и резко снижает пластичность.

Деформируемые сплавы при нагреве под обработку давлением должны иметь гомогенную структуру твердого раствора, обеспечивающую наиболь­шую пластичность и наименьшую прочность. Это и обусловливает их хоро­шую обрабатываемость давлением.

Для получения литейных сплавов в алюминий вводят такие легирующие элементы и в таком количестве, чтобы обеспечить получение в их струк­туре эвтектики. Эвтектика легкоплавка и кристаллизуется при постоянной температуре, что создает хорошую жидкотекучесть, т.е. способность сплава в жидком состоянии хорошо заполнять литейную форму.

Применяемые в настоящее время литейные алюминиевые сплавы, делят на пять групп в зависимости от того, какой основной легирующий элемент введен в них. К группе 1 относят сплавы, легированные магнием, к груп­пе 2кремнием, 3медью, 4одновременно кремнием и медью, к группе 5 относят сплавы, легируемые другими элементами, включающие в свой сос­тав иногда до пяти легирующих компонентов одновременно.

Марки литейных сплавов независимо от их принадлежности к той или иной группе обозначают буквами АЛ (алюминиевый литейный) и номером.

Наиболее характерные составы литейных алюминиевых сплавов всех пяти групп приведены в таблице. Там же указаны и другие марки сплавов, от­носящихся к каждой из этих групп.

Основными легирующими элементами в различных деформируемых сплавах является медь, магний, марганец и цинк, кроме того, в сравнительно не­больших количествах вводят также кремний, железо, никель и некоторые другие элементы.

Деформируемые алюминиевые сплавы делят на упрочняемые и неупрочняе­мые. Это наименование отражает способность или неспособность сплава заметно повышать прочность при термической обработке.

Структурные превращения, происходящие в алюминиевых сплавах при их термической обработке, существенно отличается от таковых в стали пото­му, что алюминий не имеет аллотропического превращения. В них повыше­ние прочности может происходить только за счет процессов, связанных с выделением из перенасыщенного в результате закалки твердого раствора какихто упрочняющих фаз.

Pages:     || 2 | 3 | 4 | 5 |   ...   | 7 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.