WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 46 |

Озон образуется, в основном, в экваториальной зоне в верхней стратосфере, а затем переносится к полюсам, где он может накапливаться особенно интенсивно зимой. Более 90 % озона сосредоточено в слое, удаленном от поверхности нашей планеты на 1050 км с максимальной концентрацией на высотах 2035 км. Слой этот иногда называют озоносферой. Если весь озон в вертикальном столбе атмосферы привести к температуре 0 °С и давлению 1000 гПа, то толщина слоя окажется в пределах 2 мм на экваторе и до 4 мм в полярных областях. Основным, весьма важным для жизни на Земле, свойством озона является его способность поглощать ультрафиолетовые лучи Солнца, губительные для живой клетки.

Аэрозоль. Совокупность взвешенных в атмосферном воздухе частичек объединяют под общим названием "аэрозоль". Это взвешенные в воздухе капли воды, кристаллы льда, частички морской соли, золы и пыли. С высотой количество частичек значительно убывает. Некоторые из них (продукты неполного сгорания, соль морской вода и т.п.) обладают свойством собирать (абсорбировать) на себе влагу, такие частички называют ядрами конденсации, они играют роль центров при образования водяных капель из пара.

В верхних слоях атмосферы (выше 100 км) в гетеросфере под влиянием ультрафиолетового излучения происходит диссоциация молекул кислорода на атомы, и на высотах более 100 км кислород почти полностью диссоциирован. Вследствие этого относительная молекулярная масса воздуха начинает уменьшаться с высотой. Предполагается, что выше 400500 км все газы, составляющие атмосферу, находятся в атомарном состоянии. Здесь наблюдается значительная ионизация газов.

Строение атмосферы по вертикали Наиболее часто атмосферу по вертикали делят на слои по значению вертикального градиента температуры. По этому признаку в атмосфере выделяется пять основных слоевсфер: тропосфера, стратосфера, мезосфера, термосфера, экзосфера. Между ними имеются небольшие по толщине переходные слоипаузы: тропопауза, стратопауза, мезопауза и термопауза (рис. 2).

Тропосфера нижний слой атмосферы, прилегающий непосредственно к земной поверхности. Высота ее в высоких широтах 67 км; в средних 1012 км в тропиках 1718 км.

Рис. 1.1. Строение атмосферы   Характерной особенностью тропосферы является уменьшение температуры с высотой: в среднем она понижается на 0,66 К на каждые 100 м. Но в тропосфере встречается и слои, в которых температура с высотой не меняется или даже растет. Эти слои называется изотермическими и инверсионными соответственно.

В тропосфере образуется туманы, облака, осадки, так как здесь содержится почти весь водяной пар.

Тропопауза переходный слой к стратосфере, характеризуется изотермией. Ниже тропопаузы наблюдается максимальные скорости ветра в виде струйных течений. Высота тропопаузы испытывает периодические (сезонные и суточные) и непериодические колебания, связанные с похолоданиями и потеплениями в тропосфере.

Стратосфера (1150 км) слой над тропосферой, в котором температура на высоте до 25 км постоянная, а выше и до ее верхней границы (50 км) растет и повышается в среднем до 0 °С. Это объясняется поглощением ультрафиолетовой радиации озоном, основная масса которого находится в этом слое.

В стратосфере водяного пара очень мало и облака там не образуются. Однако на высотах 2227 км иногда появляется тонкие светящиеся ночью облака, называемые перламутровыми. Эти облака никакого отношения к погоде не имеют.

Стратосфера сверху ограничивается стратопаузой.

Мезосфера (5080 км) слой над стратосферой с верхней границей мезопаузой, находящейся примерно на высоте 80 км. Здесь наблюдается понижение температуры с высотой в среднем 0,3 К на 100 м и на верхней границе она равна в среднем 8590 °С. Это самая низкая температура на Земле. Для мезосферы так же как и для тропосферы, характерна значительная турбулентность и вертикальное перемешивание воздуха, плотность которого здесь незначительна.

Вблизи верхней границы мезосферы в сумерки летом при ясной погоде наблюдаются блестящие тонкие облака, ярко освещаемые солнцем, находящимся за горизонтом, которые называются серебристыми.

Термосфера (90450 км) очень мощный слой, расположенный выше мезопаузы. Для термосферы характерен рост температуры с высотой, который связан с поглощением солнечной энергии атмосферным кислородом; на высоте 200250 км она достигает от 1000 до 2000 К. Однако следует помнить, что тело, помещенное в весьма разреженной (в 10121014раз) газовой среде этого слоя, не может принять температуру окружавшего воздуха, так как общая энергия разреженного газа очень мала. Здесь термодинамическое значение температуры теряет смысл. Температуру в данном случав не измеряют, а вычисляют. Переходный слой между термосферой и вышележащей экзосферой называют термопаузой.

Экзосфера слой выше термосферы, ее характерной чертой является рассеяние атомов атмосферных газов в ее верхней части в межпланетное пространство. В основном наблюдается рассеяние наиболее легких газов водорода и гелия, которые могут достигать критической скорости (11,2 км/с) и, преодолевая силу земного тяготения, ускользать из атмосферы, поэтому экзосферу называют также сферой рассеяния.

По электрическому состоянию атмосферу делят на две части:

относительно плохо проводящую нижние слои до высот примерно 40 км нейтросферу;

ионизированную область выше 6030 км ионосферу.

Ионосфера состоит из ряда слоевобластей (D, Е, F1, F2,), в которых наблюдаются максимумы концентрации ионов. Каждый из этих слоев играет определенную роль при распространении радиоволн различной длины.

Отражение средних и коротких волн от областей ионосферы к Земле и затем от Земли снова к ионосфере, повторение этих циклов способствует распространению радиоволн на большие расстояния вдоль поверхности Земли. Ультракороткие волны (УКВ) длиной менее 10 м почти пронизывают ионосферу и используются для радиосвязи со спутниками и космическими кораблями. В полярных и околополярных областях высокие слои атмосферы под влиянием бомбардировки корпускулярными потоками Солнца начинают светиться, возникают полярные сияния. Верхняя граница полярных сияний может находиться на высоте 20001200 км, а нижняя всего на 60 км.

  Тропосфера как сфера погода В тропосфере находится 80% массы всей атмосферы, практически вся атмосферная вода, весь аэрозоль и вся углекислота. Эти факты обуславливают процессы атмосферы, приводящие к образованию продуктов конденсации: облаков, туманов, осадков. Фазовое превращение в атмосфере воды испарение, конденсация является основным механизмом передачи тепла от океана в атмосферу.

В тропосфере протекают основные погодообразующие процессы, т.е. тропосфера сфера погоды.

В вертикальном строении тропосферы выделяют три основных сдоя:

приземный слой толщиной 50100 м, планетарный слой трения, толщиной от 500 м при устойчивой стратификации и до 2 км при развитой конвекции и турбулентности.

свободная атмосфера, слой тропосферы выше слоя трения до верхней границы тропосферы. Трением о подстилающую поверхность здесь можно пренебречь.

  1.1.2. Основные метеорологические величины. Атмосферные явления.

К метеорологическим величинам относятся – температура, давление, влажность воздуха, скорость и направление ветра, облачность, количество осадков, метеорологическая дальность видимости.

Атмосферные явления – это физические процессы, которые сопровождаются резким качественным изменением состояния атмосферы (дождь, снег, иней, радуга, гроза, полярное сияние, мираж и т.д.) Погода – это совокупность метеорологических величин и атмосферных явлений в данный момент или промежуток времени в данном месте.

Климат – это многолетний режим погоды в данном географическом районе.

Метеорологические величины.

Температура (воздуха, почвы, воды) – это характеристика теплового состояния тела, мера нагретости тела.

Воздух, как и всякое тело, всегда имеет температуру, отличную от абсолютного нуля. Температура воздуха в каждой точке атмосферы непрерывно изменяется; в разных местах Земли в одно и то же время она также различна. У земной поверхности температура воздуха варьирует в довольно широких пределах: крайние ее значения, наблюдавшиеся до сих пор, немного ниже +60 °С (в тропических пустынях) и около —90 °С (на материке Антарктиды).

С высотой температура воздуха изменяется в разных слоях и в разных случаях поразному. В среднем она сначала понижается до высоты 10—15 км, затем растет до 50—60 км, потом снова падает и т. д.

Температура воздуха, а также почвы и воды в системе СИ выражается в градусах международной температурной шкалы, или шкалы Цельсия (°С), общепринятой в физических измерениях. Нуль этой шкалы приходится на температуру, при которой тает лед, а 100°С—на температуру кипения воды (то и другое при давлении 1013 гПа).

Наряду со шкалой Цельсия широко распространена (особенно в теории) абсолютная шкала температуры (шкала Кельвина). Нуль этой шкалы отвечает полному прекращению движения молекул, т.е. самой низкой температуре. По шкале Цельсия это будет –273,1°С. Единица абсолютной шкалы, называемая Кельвином, равна единице шкалы Цельсия: 1К = 1°С. По абсолютной шкале температура может быть только положительной, т.е. выше абсолютного нуля. В формулах температура по абсолютной шкале обозначается через Т, а температура по Цельсию – через t.

Для перехода от температуры по Цельсию к температуре по Кельвину используется формула:

ТК = t°С+273, Еще одна температурная шкала, которая применяется, в частности, в США,предложенная Г. Фаренгейтом в 1724, – шкала Фаренгейта, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F32), Таким образом, градус Фаренгейта почти вдвое меньше градуса стоградусной шкалы и нули у этих шкал не совпадают. Нуль по шкале Фаренгейта соответствует температуре 17.8° по стоградусной шкале   Давление – сила гидростатического давления воздуха. приходящаяся на единицу площади.

Атмосферное давление измеряется весом вышерасположенного столба воздуха на единицу горизонтальной поверхности. Общая масса атмосферы, которой она давит на поверхность Земли, составляет 5,15*1015 т.

Со времен Торичелли (ХУ11) давление воздуха измеряют высотой ртутного столба в миллиметрах или дюймах, когда в практику стали вводиться различные расчетные методы анализа и прогноза состояния атмосферы, оказалось, что линейная мера – миллиметры. не связанная с физической сущностью давления как силы, крайне неудобна. Поэтому в 20х гг. норвежским метеорологом В.Бьеркенсом была предложена новая единица для измерения атмосферного давления – миллибар (мбар). Миллибар – это единица атмосферного давления, равная 1000 дин на 1 см2 (1 дин – сила, которая сообщает массе в 1 г ускорение движения в 1 см/с2).

В миллибарах нормальное давление (среднее давление на уровне моря на широте 45° при температуре воздуха 0°С) составляет 1013,25 мбар или 760 мм рт.ст., а за стандартное давление принимается 1000 мбар или 750 мм.рт.ст.

В настоящее время в системе единиц (СИ) давление измеряют в Паскалях (Па). Паскаль – давление, вызываемое силой в 1 Н, равномерно распределенное по площади 1 м2, 100 Па = 1гПа. Один гектопаскаль численно равен одному миллибару.

Единицы измерения давления: гПа, мб, мм.рт.ст.

[P] = [H/m] = [Па], 1гПа = 100Па = 1мб 1мм.рт.ст. = 4/3 =1,333 гПа 1гПа = ? = 0,75мм.рт.ст   Влажность воздуха Одной из составляющих воздуха атмосферы является пар. Его большее или меньшее количество в воздухе определяет влажность или сухость климата, условия жизни человека и роста растений.

Поглощая большую часть собственного излучения земли и передавая часть полученного тепла подстилающей поверхности, образуя встречное излучение, водяной пар уменьшает интенсивность охлаждения подстилающей поверхности, когда нет поступления солнечной радиации. Следовательно, чем больше содержится водяных паров в атмосфере, тем медленнее понижается температура подстилающей поверхности, а отсюда и окружающего воздуха после захода солнца. А так как повышенная влажность воздуха, как правило, наблюдается при приближении теплого фронта или циклона, то повышение температуры воздуха вечером является одним из признаков ухудшения погоды.

Конденсация водяного г ара на наземных предметах приводит к образованию росы, инея. изморози и т.п. Конденсация водяного пара в приземном слое атмосферы приводит к образованию туманов, которые значительно ухудшают видимость. Конденсация водяного пара в свободной атмосфере приводит к образованию различных форм облаков и осадков. Конденсация и испарение сопровождается выделением и поглощением большого количества тепла, и это еще увеличивает роль пара в энергетике и термодинамике атмосферы.

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 46 |




© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.